Package: rpls 0.6.0
rpls: Robust Partial Least Squares
A robust Partial Least-Squares (PLS) method is implemented that is robust to outliers in the residuals as well as to leverage points. A specific weighting scheme is applied which avoids iterations, and leads to a highly efficient robust PLS estimator.
Authors:
rpls_0.6.0.tar.gz
rpls_0.6.0.zip(r-4.5)rpls_0.6.0.zip(r-4.4)rpls_0.6.0.zip(r-4.3)
rpls_0.6.0.tgz(r-4.4-any)rpls_0.6.0.tgz(r-4.3-any)
rpls_0.6.0.tar.gz(r-4.5-noble)rpls_0.6.0.tar.gz(r-4.4-noble)
rpls_0.6.0.tgz(r-4.4-emscripten)rpls_0.6.0.tgz(r-4.3-emscripten)
rpls.pdf |rpls.html✨
rpls/json (API)
# Install 'rpls' in R: |
install.packages('rpls', repos = c('https://filzmoserp.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:ae2afc982d. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 25 2024 |
R-4.5-win | OK | Oct 25 2024 |
R-4.5-linux | OK | Oct 25 2024 |
R-4.4-win | OK | Oct 25 2024 |
R-4.4-mac | OK | Oct 25 2024 |
R-4.3-win | OK | Oct 25 2024 |
R-4.3-mac | OK | Oct 25 2024 |
Dependencies:DEoptimRmvtnormpcaPProbustbase
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Partial Robust Adaptive Modified Maximum Likelihood | pramml |
Robust PLS | PRM |
Robust Adaptive Modified Maximum Likelihood | ramml |