Package 'StatDA'

Title: Statistical Analysis for Environmental Data
Description: Statistical analysis methods for environmental data are implemented. There is a particular focus on robust methods, and on methods for compositional data. In addition, larger data sets from geochemistry are provided. The statistical methods are described in Reimann, Filzmoser, Garrett, Dutter (2008, ISBN:978-0-470-98581-6).
Authors: Peter Filzmoser [aut, cre, cph]
Maintainer: Peter Filzmoser <[email protected]>
License: GPL (>= 3)
Version: 1.7.11
Built: 2025-01-27 04:10:41 UTC
Source: https://github.com/cran/StatDA

Help Index


Adaptive reweighted estimator for multivariate location and scatter

Description

Adaptive reweighted estimator for multivariate location and scatter with hard-rejection weights. The multivariate outliers are defined according to the supremum of the difference between the empirical distribution function of the robust Mahalanobis distance and the theoretical distribution function.

Usage

arw(x, m0, c0, alpha, pcrit)

Arguments

x

Dataset (n x p)

m0

Initial location estimator (1 x p)

c0

Initial scatter estimator (p x p)

alpha

Maximum thresholding proportion (optional scalar, default: alpha = 0.025)

pcrit

Critical value obtained by simulations (optional scalar, default value obtained from simulations)

Details

At the basis of initial estimators of location and scatter, the function arw performs a reweighting step to adjust the threshold for outlier rejection. The critical value pcrit was obtained by simulations using the MCD estimator as initial robust covariance estimator. If a different estimator is used, pcrit should be changed and computed by simulations for the specific dimensions of the data x.

Value

m

Adaptive location estimator (p x 1)

c

Adaptive scatter estimator (p x p)

cn

Adaptive threshold ("adjusted quantile")

w

Weight vector (n x 1)

Author(s)

Moritz Gschwandtner <[email protected]>
Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

P. Filzmoser, R.G. Garrett, and C. Reimann (2005). Multivariate outlier detection in exploration geochemistry. Computers & Geosciences, 31:579-587.

Examples

x <- cbind(rnorm(100), rnorm(100))
arw(x, apply(x,2,mean), cov(x))

Au data, new

Description

Au data from Kola C-horizon, new measurement method

Usage

data(AuNEW)

Format

The format is: num [1:606] 0.001344 0.000444 0.001607 0.000713 0.000898 ...

Details

These data of Au have much higher quality than the data AuOLD.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(AuNEW)
data(AuOLD)
plot(log10(AuOLD),log10(AuNEW))

Au data, old

Description

Au data from Kola C-horizon, old measurement method

Usage

data(AuOLD)

Format

The format is: num [1:606] 0.001 0.001 0.002 0.001 0.007 0.006 0.001 0.001 0.001 0.001 ...

Details

These data of Au have much worse quality than the data AuNEW.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(AuNEW)
data(AuOLD)
plot(log10(AuOLD),log10(AuNEW))

B-horizon of the Kola Data

Description

The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the B-horizon.

Usage

data(bhorizon)

Format

A data frame with 609 observations on the following 77 variables.

ID

a numeric vector

XCOO

a numeric vector

YCOO

a numeric vector

ELEV

a numeric vector

COUN

a factor with levels FIN NOR RUS

ASP

a factor with levels E FLAT N NE NW NW S SE SW W

LOWDB

a numeric vector

LITO

a numeric vector

GENLAN

a factor with levels DEEPVAL FLA PLAIN FLAT HIMO LOWMO PLAIN PLAT RIDGE SLOPE

Ag

a numeric vector

Al

a numeric vector

Al_XRF

a numeric vector

Al2O3

a numeric vector

As

a numeric vector

Au

a numeric vector

B

a numeric vector

Ba

a numeric vector

Be

a numeric vector

Bi

a numeric vector

Br_IC

a numeric vector

Ca

a numeric vector

Ca_XRF

a numeric vector

CaO

a numeric vector

Cd

a numeric vector

Cl_IC

a numeric vector

Co

a numeric vector

Cr

a numeric vector

Cu

a numeric vector

EC

a numeric vector

F_IC

a numeric vector

Fe

a numeric vector

Fe_XRF

a numeric vector

Fe2O3

a numeric vector

Hg

a numeric vector

K

a numeric vector

K_XRF

a numeric vector

K2O

a numeric vector

La

a numeric vector

Li

a numeric vector

LOI

a numeric vector

Mg

a numeric vector

Mg_XRF

a numeric vector

MgO

a numeric vector

Mn

a numeric vector

Mn_XRF

a numeric vector

MnO

a numeric vector

Mo

a numeric vector

Na

a numeric vector

Na_XRF

a numeric vector

Na2O

a numeric vector

Ni

a numeric vector

NO3_IC

a numeric vector

P

a numeric vector

P_XRF

a numeric vector

P2O5

a numeric vector

Pb

a numeric vector

Pd

a numeric vector

pH

a numeric vector

PO4_IC

a numeric vector

Pt

a numeric vector

S

a numeric vector

Sb

a numeric vector

Sc

a numeric vector

Se

a numeric vector

Si

a numeric vector

Si_XRF

a numeric vector

SiO2

a numeric vector

SO4_IC

a numeric vector

Sr

a numeric vector

Te

a numeric vector

Th

a numeric vector

Ti

a numeric vector

Ti_XRF

a numeric vector

TiO2

a numeric vector

V

a numeric vector

Y

a numeric vector

Zn

a numeric vector

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(bhorizon)
str(bhorizon)

Borders of the Kola Project boundary

Description

x- and y-coordinates of the Kola Project boundary.

Usage

data(bordersKola)

Format

The format is: List of 2 $ x: num [1:64] 836200 881000 752900 743100 737500 ... $ y: num [1:64] 7708867 7403003 7389239 7377769 7364006 ...

Details

The corrdinates for the Kola Project boundary are used for the surface maps, i.e. for Krige and Smoothing maps. It is a list with two list elements x and y for the x- and y-coordinates.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(bordersKola)
plot(bordersKola$x,bordersKola$y)

Boxes

Description

The function boxes computes boxes of multivariate data. If add=TRUE the boxes are plotted in the current plot otherwise nothing is plotted.

Usage

boxes(x, xA = 1, yA = 2, zA = 3, labels = dimnames(x)[[1]], locations = NULL,
nrow = NULL, ncol = NULL, key.loc = NULL, key.labels = dimnames(x)[[2]],
key.xpd = TRUE, xlim = NULL, ylim = NULL, flip.labels = NULL, len = 1,
leglen = 1, axes = FALSE, frame.plot = axes, main = NULL, sub = NULL,
xlab = "", ylab = "", cex = 0.8, lwd = 0.25, lty = par("lty"), xpd = FALSE,
mar = pmin(par("mar"), 1.1 + c(2 * axes + (xlab != ""), 2 * axes + (ylab != ""),
 1, 0)), add = FALSE, plot = TRUE, ...)

Arguments

x

multivariate data in form of matrix or data frame

xA

assignment of clusters to the coordinates of the boxes

yA

assignment of clusters to the coordinates of the boxes

zA

assignment of clusters to the coordinates of the boxes

labels

vector of character strings for labeling the plots

locations

locations for the boxes on the plot (e.g. X/Y coordinates)

nrow

integers giving the number of rows ands columns to use when 'locations' is 'NULL'. By default, 'nrow == ncol', a square will be used.

ncol

integers giving the number of rows and columns to use when 'locations' is 'NULL'. By default, 'nrow == ncol', a square will be used.

key.loc

vector with x and y coordinates of the unit key.

key.labels

vector of character strings for labeling the segments of the unit key. If omitted, the second component of 'dimnames(x)' ist used, if available.

key.xpd

clipping switch for the unit key (drawing and labeling), see 'par("xpd")'.

xlim

vector with the range of x coordinates to plot

ylim

vector with the range of y coordinates to plot

flip.labels

logical indicating if the label locations should flip up and down from diagram to diagram. Defaults to a somewhat smart heuristic.

len

multiplicative values for the space used in the plot window

leglen

multiplicative values for the space of the labels on the legend

axes

logical flag: if 'TRUE' axes are added to the plot

frame.plot

logical flag: if 'TRUE', the plot region ist framed

main

a main title for the plot

sub

a sub title for the plot

xlab

a label for the x axis

ylab

a label for the y axis

cex

character expansion factor for the labels

lwd

line width used for drawing

lty

line type used for drawing

xpd

logical or NA indicationg if clipping should be done, see 'par(xpd=.)'

mar

argument to 'par(mar=*)', rypically choosing smaller margings than by default

add

logical, if 'TRUE' add boxes to current plot

plot

logical, if 'FALSE', nothing is plotted

...

further arguments, passed to the first call of 'plot()'

Details

This type of graphical approach for multivariate data is only applicable where the data can be grouped into three clusters. This means that before the plot can be made the data undergo a hierarchical cluster to get the size of each cluster. The distance measure for the hierarchicla cluster is complete linkage. Each cluster represents one side of the boxes.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

plot.default,box

Examples

#plots the background and the boxes for the elements
data(ohorizon)
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
el=log10(ohorizon[,c("Co","Cu","Ni","Rb","Bi","Na","Sr")])
data(kola.background)

sel <- c(3,8,22, 29, 32, 35, 43, 69, 73 ,93,109,129,130,134,168,181,183,205,211,
      218,237,242,276,292,297,298,345,346,352,372,373,386,408,419,427,441,446,490,
      516,535,551,556,558,564,577,584,601,612,617)

x=el[sel,]
xwid=diff(range(X))/12e4
ywid=diff(range(Y))/12e4
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n",
   xlim=c(360000,max(X)))
plotbg(map.col=c("gray","gray","gray","gray"),add.plot=TRUE)

boxes(x,locations=cbind(X[sel],Y[sel]),len=20000,key.loc=c(800000,7830000),leglen=25000,
     cex=0.75, add=TRUE, labels=NULL, lwd=1.1)

Boxplotlegend

Description

This function plots the legend in form of a boxplot. The symbols represent the different levels (e.g. whiskers, median, ...) of the boxplot.

Usage

boxplotlegend(X, Y, el, boxinfo, x.shift = 40000, xf = 10000, y.shift = 0.2,
y.scale = 130000, legend.title = "Legend", cex.legtit = 1, logscale = TRUE,
symb = c(1, 1, 16, 3, 3), ssize = c(1.5, 1, 0.3, 1, 1.5), accentuate = FALSE,
cex.scale = 0.8)

Arguments

X

X-coordinates

Y

Y-coordinates

el

variable considered

boxinfo

from boxplot(el) or boxplotlog(el)

x.shift

shift in x-direction

xf

width in x-direction

y.shift

shift in y-direction (from title)

y.scale

scale in y-direction

legend.title

title for legend

cex.legtit

cex of title for legend

logscale

if TRUE plot boxplot in log-scale

symb

symbols to be used (length 5!)

ssize

symbol sizes to be used (length 5!)

accentuate

if FALSE no symbols for the upper values (e.g. upper "hinge", upper whisker) are assigned

cex.scale

cex for text "log-scale" for scale

Details

Takes the information provided by the argument boxinfo and plots a boxplot corresponding to the values. If there are no upper or/and lower outliers the symbols for the upper or/and lower whiskers will be ignored.

Value

Plots the legend with respect to the boxplot and returns the symbols, size and the quantiles used for the legend.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

#internal function, used in SymbLegend

Boxplotlog

Description

The function boxplot plots a boxplot of the data with respect to the logarithmic transformed values of the whiskers. See also details.

Usage

boxplotlog(x, ..., range = 1.5, width = NULL, varwidth = FALSE, notch = FALSE,
outline = TRUE, names, plot = TRUE, border = par("fg"), col = NULL, log = "",
pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5), horizontal = FALSE,
add = FALSE, at = NULL)

Arguments

x

data

...

further arguments for creating the list

range

this determines how far the plot "whiskers" extend from the box. If range is positive, the most extreme data point which is no more than range times the length of the box away from the box. A value of zero causes the whiskers to extend to the data extremes.

width

a vector giving the relative widths of the boxes making up the plot

varwidth

if varwidth is TRUE, the boxes are drawn with widths proportional to the square-roots of the number of observations in the groups.

notch

if notch is TRUE, a notch is drawn in each side of the boxes

outline

if outline is FALSE, the outliers are not drawn

names

define the names of the attributes

plot

if plot is TRUE the boxplot is plotted in the current plot

border

character or numeric (vector) which indicates the color of the box borders

col

defines the colour

log

character, indicating if any axis should be drawn in logarithmic scale

pars

some graphical parameters can be specified

horizontal

logical parameter indicating if the boxplots should be horizontal; FALSE means vertical boxes

add

if TRUE the boxplot is added to the current plot

at

numeric vector giving the locations of the boxplots

Details

Sometimes a boxplot of the original data does not identify outliers because the boxplot assumes normal distribution. Therefore the data are logarithmically transformed and values for plotting the boxplot are calculated. After that the data are backtransformed and the boxplot is plotted with respect to the logarithmic results. Now the outliers are identified.

Value

stats

a vector of length 5, containing the extreme of the lower whisker, the lower "hinge", the median, the upper "hinge" and the extreme of the upper whisker (backtransformed)

n

the number of non-NA observations in the sample

conf

the lower and upper extremes of the "notch"

out

the values of any data points which lie beyond the extremes of the whiskers (backtransformed)

group

the group

names

the attributes

Returns a boxplot which is calculated with the log-transformed data.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
Ba=chorizon[,"Ba"]

boxplotlog((Ba),horizontal=TRUE,xlab="Ba [mg/kg]",cex.lab=1.4,pch=3,cex=1.5)

Boxplot based on percentiles

Description

This function plots a boxplot of the data and the boundaries are based on percentiles.

Usage

boxplotperc(x, ..., quant = c(0.02, 0.98), width = NULL, varwidth = FALSE,
notch = FALSE, outline = TRUE, names, plot = TRUE, border = par("fg"),
col = NULL, log = "", pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL)

Arguments

x

data

...

further arguments for creating the list

quant

the underlying percentages

width

a vector giving the relative widths of the boxes making up the plot

varwidth

if varwidth is TRUE, the boxes are drawn with widths proportional to the square-roots of the number of observations in the groups.

notch

if notch is TRUE, a notch is drawn in each side of the boxes

outline

if outliers is FALSE, the outliers are not drawn

names

define the names of the attributes

plot

if plot is TRUE the boxplot is plotted in the current plot

border

character or numeric (vector) which indicates the color of the box borders

col

defines the colour

log

character, indicating if any axis should be drawn in logarithmic scale

pars

some graphical parameters can be specified

horizontal

logical parameter indicating if the boxplots should be horizontal; FALSE means vertical boxes

add

if TRUE the boxplot is added to the current plot

at

numeric vector giving the locations of the boxplots

Details

The default value for quant is the 2% and 98% quantile and this argument defines the percentiles for the upper and lower whiskers.

Value

stats

a vector of length 5, containing the extreme of the lower whisker, the lower "hinge", the median, the upper "hinge" and the extreme of the upper whisker (backtransformed)

n

the number of non-NA observations in the sample

conf

the lower and upper extremes of the "notch"

out

the values of any data points which lie beyond the extremes of the whiskers (backtransformed)

group

the group

names

the attributes

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

boxplotlog

Examples

data(chorizon)
Ba=chorizon[,"Ba"]
boxplotperc(Ba,quant=c(0.05,0.95),horizontal=TRUE,xlab="Ba [mg/kg]",cex.lab=1.2,pch=3)

Bubbleplot due to Finnish method

Description

This function plots multivariate data with respect to the value. The size of the bubble represents the value of the datapoint.

Usage

bubbleFIN(x, y, z, radi = 10000, S = 9, s = 0.9, wa = 0, wb = 0.95, wc = 0.05,
plottitle = "BubblePlot", legendtitle = "Legend", text.cex = 1,
legtitle.cex = 1, backgr = "kola.background", leg = TRUE, ndigits = 1)

Arguments

x

x coordinates

y

y coordinates

z

measured value at point (x,y)

radi

scaling for the map

S, s

control the size of the largest and smallest bubbles

wa, wb, wc

factors which defines the shape of the exponential function

plottitle

the titel of the plot

legendtitle

the titel of the legend

text.cex

multiplier for the size of the labels

legtitle.cex

multiplier for the size of the legendtitle

backgr

which background should be used

leg

if TRUE the bubbles are plotted to the legend

ndigits

how much digits should be plotted at the legend

Details

The smallest bubbles represent the 10% quantile and the biggest bubbles represent the 99

Value

Plots bubbles in the existing plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(kola.background)
data(ohorizon)
el=ohorizon[,"Mg"]
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n") #plot bubbles with background
plotbg(map.col=c("gray","gray","gray","gray"),add.plot=TRUE)

bubbleFIN(X,Y,el,S=9,s=2,plottitle="",legendtitle="Mg [mg/kg]", text.cex=0.63,legtitle.cex=0.80)

Analytical duplicates of the C-horizon Kola data

Description

Analytical duplicates have been selected for quality control.

Usage

data(CHorANADUP)

Format

A data frame with 52 observations on the following 190 variables.

A1_.Loc

a numeric vector

A2_.Loc

a numeric vector

A1_Ag

a numeric vector

A1_Ag_INAA

a numeric vector

A1_Al

a numeric vector

A1_Al2O3

a numeric vector

A1_As

a numeric vector

A1_As_INAA

a numeric vector

A1_Au_INAA

a numeric vector

A1_B

a numeric vector

A1_Ba

a numeric vector

A1_Ba_INAA

a numeric vector

A1_Be

a numeric vector

A1_Bi

a numeric vector

A1_Br

a numeric vector

A1_Br_INAA

a numeric vector

A1_Ca

a numeric vector

A1_Ca_INAA

a numeric vector

A1_CaO

a numeric vector

A1_Cd

a numeric vector

A1_Ce_INAA

a numeric vector

A1_Cl

a numeric vector

A1_Co

a numeric vector

A1_Co_INAA

a numeric vector

A1_Cond

a numeric vector

A1_Cr

a numeric vector

A1_Cr_INAA

a numeric vector

A1_Cs_INAA

a numeric vector

A1_Cu

a numeric vector

A1_Eu_INAA

a numeric vector

A1_F

a numeric vector

A1_F_ionselect

a numeric vector

A1_Fe

a numeric vector

A1_Fe_INAA

a numeric vector

A1_Fe2O3

a numeric vector

A1_Hf_INAA

a numeric vector

A1_Hg

a numeric vector

A1_Hg_INAA

a numeric vector

A1_Ir_INAA

a numeric vector

A1_K

a numeric vector

A1_K2O

a numeric vector

A1_La

a numeric vector

A1_La_INAA

a numeric vector

A1_Li

a numeric vector

A1_LOI

a numeric vector

A1_Lu_INAA

a numeric vector

A1_Mass_INAA

a numeric vector

A1_Mg

a numeric vector

A1_MgO

a numeric vector

A1_Mn

a numeric vector

A1_MnO

a numeric vector

A1_Mo

a numeric vector

A1_Mo_INAA

a numeric vector

A1_Na

a numeric vector

A1_Na_INAA

a numeric vector

A1_Na2O

a numeric vector

A1_Nd_INAA

a numeric vector

A1_Ni

a numeric vector

A1_Ni_INAA

a numeric vector

A1_NO2

a numeric vector

A1_NO3

a numeric vector

A1_P

a numeric vector

A1_P2O5

a numeric vector

A1_Pb

a numeric vector

A1_pH

a numeric vector

A1_PO4

a numeric vector

A1_Rb

a numeric vector

A1_S

a numeric vector

A1_Sb

a numeric vector

A1_Sb_INAA

a numeric vector

A1_Sc

a numeric vector

A1_Sc_INAA

a numeric vector

A1_Se

a numeric vector

A1_Se_INAA

a numeric vector

A1_Si

a numeric vector

A1_SiO2

a numeric vector

A1_Sm_INAA

a numeric vector

A1_Sn_INAA

a numeric vector

A1_SO4

a numeric vector

A1_Sr

a numeric vector

A1_Sr_INAA

a numeric vector

A1_Sum

a numeric vector

A1_Ta_INAA

a numeric vector

A1_Tb_INAA

a numeric vector

A1_Te

a numeric vector

A1_Th

a numeric vector

A1_Th_INAA

a numeric vector

A1_Ti

a numeric vector

A1_TiO2

a numeric vector

A1_U_INAA

a numeric vector

A1_V

a numeric vector

A1_W_INAA

a numeric vector

A1_Y

a numeric vector

A1_Yb_INAA

a numeric vector

A1_Zn

a numeric vector

A1_Zn_INAA

a numeric vector

A2_Ag

a numeric vector

A2_Ag_INAA

a numeric vector

A2_Al

a numeric vector

A2_Al2O3

a numeric vector

A2_As

a numeric vector

A2_As_INAA

a numeric vector

A2_Au_INAA

a numeric vector

A2_B

a numeric vector

A2_Ba

a numeric vector

A2_Ba_INAA

a numeric vector

A2_Be

a numeric vector

A2_Bi

a numeric vector

A2_Br

a numeric vector

A2_Br_INAA

a numeric vector

A2_Ca

a numeric vector

A2_Ca_INAA

a numeric vector

A2_CaO

a numeric vector

A2_Cd

a numeric vector

A2_Ce_INAA

a numeric vector

A2_Cl

a numeric vector

A2_Co

a numeric vector

A2_Co_INAA

a numeric vector

A2_Cond

a numeric vector

A2_Cr

a numeric vector

A2_Cr_INAA

a numeric vector

A2_Cs_INAA

a numeric vector

A2_Cu

a numeric vector

A2_Eu_INAA

a numeric vector

A2_F

a numeric vector

A2_F_ionselect

a numeric vector

A2_Fe

a numeric vector

A2_Fe_INAA

a numeric vector

A2_Fe2O3

a numeric vector

A2_Hf_INAA

a numeric vector

A2_Hg

a numeric vector

A2_Hg_INAA

a numeric vector

A2_Ir_INAA

a numeric vector

A2_K

a numeric vector

A2_K2O

a numeric vector

A2_La

a numeric vector

A2_La_INAA

a numeric vector

A2_Li

a numeric vector

A2_LOI

a numeric vector

A2_Lu_INAA

a numeric vector

A2_Mass_INAA

a numeric vector

A2_Mg

a numeric vector

A2_MgO

a numeric vector

A2_Mn

a numeric vector

A2_MnO

a numeric vector

A2_Mo

a numeric vector

A2_Mo_INAA

a numeric vector

A2_Na

a numeric vector

A2_Na_INAA

a numeric vector

A2_Na2O

a numeric vector

A2_Nd_INAA

a numeric vector

A2_Ni

a numeric vector

A2_Ni_INAA

a numeric vector

A2_NO2

a numeric vector

A2_NO3

a numeric vector

A2_P

a numeric vector

A2_P2O5

a numeric vector

A2_Pb

a numeric vector

A2_pH

a numeric vector

A2_PO4

a numeric vector

A2_Rb

a numeric vector

A2_S

a numeric vector

A2_Sb

a numeric vector

A2_Sb_INAA

a numeric vector

A2_Sc

a numeric vector

A2_Sc_INAA

a numeric vector

A2_Se

a numeric vector

A2_Se_INAA

a numeric vector

A2_Si

a numeric vector

A2_SiO2

a numeric vector

A2_Sm_INAA

a numeric vector

A2_Sn_INAA

a numeric vector

A2_SO4

a numeric vector

A2_Sr

a numeric vector

A2_Sr_INAA

a numeric vector

A2_Sum

a numeric vector

A2_Ta_INAA

a numeric vector

A2_Tb_INAA

a numeric vector

A2_Te

a numeric vector

A2_Th

a numeric vector

A2_Th_INAA

a numeric vector

A2_Ti

a numeric vector

A2_TiO2

a numeric vector

A2_U_INAA

a numeric vector

A2_V

a numeric vector

A2_W_INAA

a numeric vector

A2_Y

a numeric vector

A2_Yb_INAA

a numeric vector

A2_Zn

a numeric vector

A2_Zn_INAA

a numeric vector

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(CHorANADUP)
str(CHorANADUP)

Field duplicates of the C-horizon Kola data

Description

Field duplicates have been selected for quality control.

Usage

data(CHorFieldDUP)

Format

A data frame with 49 observations on the following 240 variables.

F1_.Loc

a numeric vector

F2_.Loc

a numeric vector

XCOO

a numeric vector

YCOO

a numeric vector

F1_Ag

a numeric vector

F1_Ag_INAA

a numeric vector

F1_Al

a numeric vector

F1_Al2O3

a numeric vector

F1_As

a numeric vector

F1_As_INAA

a numeric vector

F1_Au_INAA

a numeric vector

F1_B

a numeric vector

F1_Ba

a numeric vector

F1_Ba_INAA

a numeric vector

F1_Be

a numeric vector

F1_Bi

a numeric vector

F1_Br

a numeric vector

F1_Br_INAA

a numeric vector

F1_Ca

a numeric vector

F1_Ca_INAA

a numeric vector

F1_CaO

a numeric vector

F1_Cd

a numeric vector

F1_Ce_INAA

a numeric vector

F1_Cl

a numeric vector

F1_Co

a numeric vector

F1_Co_INAA

a numeric vector

F1_Cond

a numeric vector

F1_Cr

a numeric vector

F1_Cr_INAA

a numeric vector

F1_Cs_INAA

a numeric vector

F1_Cu

a numeric vector

F1_Eu_INAA

a numeric vector

F1_F

a numeric vector

F1_F_ionselect

a numeric vector

F1_Fe

a numeric vector

F1_Fe_INAA

a numeric vector

F1_Fe2O3

a numeric vector

F1_Hf_INAA

a numeric vector

F1_Hg

a numeric vector

F1_Hg_INAA

a numeric vector

F1_Ir_INAA

a numeric vector

F1_K

a numeric vector

F1_K2O

a numeric vector

F1_La

a numeric vector

F1_La_INAA

a numeric vector

F1_Li

a numeric vector

F1_LOI

a numeric vector

F1_Lu_INAA

a numeric vector

F1_Mass_INAA

a numeric vector

F1_Mg

a numeric vector

F1_MgO

a numeric vector

F1_Mn

a numeric vector

F1_MnO

a numeric vector

F1_Mo

a numeric vector

F1_Mo_INAA

a numeric vector

F1_Na

a numeric vector

F1_Na_INAA

a numeric vector

F1_Na2O

a numeric vector

F1_Nd_INAA

a numeric vector

F1_Ni

a numeric vector

F1_Ni_INAA

a numeric vector

F1_NO2

a numeric vector

F1_NO3

a numeric vector

F1_P

a numeric vector

F1_P2O5

a numeric vector

F1_Pb

a numeric vector

F1_pH

a numeric vector

F1_PO4

a numeric vector

F1_Rb

a numeric vector

F1_S

a numeric vector

F1_Sb

a numeric vector

F1_Sb_INAA

a numeric vector

F1_Sc

a numeric vector

F1_Sc_INAA

a numeric vector

F1_Se

a numeric vector

F1_Se_INAA

a numeric vector

F1_Si

a numeric vector

F1_SiO2

a numeric vector

F1_Sm_INAA

a numeric vector

F1_Sn_INAA

a numeric vector

F1_SO4

a numeric vector

F1_Sr

a numeric vector

F1_Sr_INAA

a numeric vector

F1_Sum

a numeric vector

F1_Ta_INAA

a numeric vector

F1_Tb_INAA

a numeric vector

F1_Te

a numeric vector

F1_Th

a numeric vector

F1_Th_INAA

a numeric vector

F1_Ti

a numeric vector

F1_TiO2

a numeric vector

F1_U_INAA

a numeric vector

F1_V

a numeric vector

F1_W_INAA

a numeric vector

F1_Y

a numeric vector

F1_Yb_INAA

a numeric vector

F1_Zn

a numeric vector

F1_Zn_INAA

a numeric vector

F2_Ag

a numeric vector

F2_Ag_INAA

a numeric vector

F2_Al

a numeric vector

F2_Al2O3

a numeric vector

F2_As

a numeric vector

F2_As_INAA

a numeric vector

F2_Au_INAA

a numeric vector

F2_B

a numeric vector

F2_Ba

a numeric vector

F2_Ba_INAA

a numeric vector

F2_Be

a numeric vector

F2_Bi

a numeric vector

F2_Br

a numeric vector

F2_Br_INAA

a numeric vector

F2_Ca

a numeric vector

F2_Ca_INAA

a numeric vector

F2_CaO

a numeric vector

F2_Cd

a numeric vector

F2_Ce_INAA

a numeric vector

F2_Cl

a numeric vector

F2_Co

a numeric vector

F2_Co_INAA

a numeric vector

F2_Cond

a numeric vector

F2_Cr

a numeric vector

F2_Cr_INAA

a numeric vector

F2_Cs_INAA

a numeric vector

F2_Cu

a numeric vector

F2_Eu_INAA

a numeric vector

F2_F

a numeric vector

F2_F_ionselect

a numeric vector

F2_Fe

a numeric vector

F2_Fe_INAA

a numeric vector

F2_Fe2O3

a numeric vector

F2_Hf_INAA

a numeric vector

F2_Hg

a numeric vector

F2_Hg_INAA

a numeric vector

F2_Ir_INAA

a numeric vector

F2_K

a numeric vector

F2_K2O

a numeric vector

F2_La

a numeric vector

F2_La_INAA

a numeric vector

F2_Li

a numeric vector

F2_LOI

a numeric vector

F2_Lu_INAA

a numeric vector

F2_Mass_INAA

a numeric vector

F2_Mg

a numeric vector

F2_MgO

a numeric vector

F2_Mn

a numeric vector

F2_MnO

a numeric vector

F2_Mo

a numeric vector

F2_Mo_INAA

a numeric vector

F2_Na

a numeric vector

F2_Na_INAA

a numeric vector

F2_Na2O

a numeric vector

F2_Nd_INAA

a numeric vector

F2_Ni

a numeric vector

F2_Ni_INAA

a numeric vector

F2_NO2

a numeric vector

F2_NO3

a numeric vector

F2_P

a numeric vector

F2_P2O5

a numeric vector

F2_Pb

a numeric vector

F2_pH

a numeric vector

F2_PO4

a numeric vector

F2_Rb

a numeric vector

F2_S

a numeric vector

F2_Sb

a numeric vector

F2_Sb_INAA

a numeric vector

F2_Sc

a numeric vector

F2_Sc_INAA

a numeric vector

F2_Se

a numeric vector

F2_Se_INAA

a numeric vector

F2_Si

a numeric vector

F2_SiO2

a numeric vector

F2_Sm_INAA

a numeric vector

F2_Sn_INAA

a numeric vector

F2_SO4

a numeric vector

F2_Sr

a numeric vector

F2_Sr_INAA

a numeric vector

F2_Sum

a numeric vector

F2_Ta_INAA

a numeric vector

F2_Tb_INAA

a numeric vector

F2_Te

a numeric vector

F2_Th

a numeric vector

F2_Th_INAA

a numeric vector

F2_Ti

a numeric vector

F2_TiO2

a numeric vector

F2_U_INAA

a numeric vector

F2_V

a numeric vector

F2_W_INAA

a numeric vector

F2_Y

a numeric vector

F2_Yb_INAA

a numeric vector

F2_Zn

a numeric vector

F2_Zn_INAA

a numeric vector

DATE

a numeric vector

X.SAMP

a factor with levels CRJHPC CRPCTF CRTF GKJHOJ GKJHTV JARR JHOJTV M?VG MLRJARP MLRJSRR MLRM?DR OJGKTV RPAV RPMLRJA RPVM Semenov Smirnov VGM?

ELEV

a numeric vector

UTM

a numeric vector

X.COUN

a factor with levels FIN NOR RUS

X.ASP

a factor with levels E FLAT N NE NW S SE SW

X.GENLAN

a factor with levels FLAT LOWMO PLAIN RIDGE SLOPE

X.TOPO

a factor with levels CONCLOW CONCMED CONVLOW CONVMED FLAT FLATLOW FLATTER LOWBRLOW LOWBRMED TER TERR TOP TOPFLAT TOPTER UPBRFLAT UPBRLOW UPBRMED UPBRTER

X.FORDEN

a factor with levels D MD MD NO S

X.TREESPE

a factor with levels BI BI.. BI.PBET.JUN BI..PI .BI.SP BI..SP BI.SP. BI.S.PJUN NO P P. P.BI P.BIJUN P.BI.S .PIBI. PI.BI PI..BI PI.BI. .PIBI.SP PI..SP PI..SPBI P.SBI P.S.BI P.SBI.JUN S.BI S.BI.JUN SP..BI SP.BI. .SPBI.PI .SPPIBI.

TRHIGH

a numeric vector

RELAS

a numeric vector

X.BUSHDEN

a factor with levels MD NO S

X.BUSHSPEC

a factor with levels BET BI ..BI .BI. BI.. .BI.JU BI..JU BI..PI JUN NO ..RO ..WI ..WIBI ..WIJU ..WIRO ..WIROJU

X.GRVEGETATIO

a factor with levels B..CGML B..CH B.CO.GM B.CRCHMO.LIN B.CRGRMARMO.LI B.CRMO BJUO.MO.CR B.JUOMO.LI B.LINMAR B.MO.CRMAR .BO.ML C.. C..BGML C.B.GML .C.BGMLO C.B.GMLO C.B.L C.BL.GM C.BM.HGL C.BML.GO C.BO.G C.BOM.L CH.BCRLIN CH.BLIN C.L.BGM C.M.GL C..ML C.OL.M C.O.MLP CR.B.LI CR.LINMO H..BML H.L.BCM L..BMO L.BO.CM L.H.BM LIN.CR.LI M.BC.GL M..BCL M.B.CLO M.BH.CGO M.B.L M.BL.GO M.O.BCGL MO.BCR MO.BCRJUO O.B.CHMLO

X.MOSS

a factor with levels -9999 HSDC HSDR HSSC HSSR PS PSDC PSDR PSRD PSSC

X.TOP

a factor with levels -9999 D10 D6 D7 M10 M4 M5 M6 M7 M8

AoMEAN

a numeric vector

X.AoRANGE

a factor with levels 0.1_1.0 0_2 0.2_2.5 0.2_4.0 0,5_2 0,5_3 0.5_4.0 0.5_5.0 1.0_3.0 1_2 1_3 1_4 1_5 1.5_3.5 1,5_5 1_6 2_ 2.0_5.0 2.0_6.0 2.0_7.0 2_3 2_4 2_5 2_6 2_7 3.0_8.0 3_12 3_5 3_6 4_12 4_6 4_8 5_ 5_10 .5_4 -9999

HUMNO

a numeric vector

HUMTHI

a numeric vector

X.C_PAR

a factor with levels FLUV FLUVG TILL TILLSAP TILL&SAP

X.C_grain

a numeric vector

X.COLA

a numeric vector

X.COLE

a numeric vector

LOWDE

a numeric vector

X.COLB

a numeric vector

LOWDB

a numeric vector

X.COLC

a numeric vector

TOPC

a numeric vector

X.WEATH

a factor with levels DRY MIX RAIN

TEMP

a numeric vector

CATLEV0

a numeric vector

CATLEV1

a numeric vector

CATLEV2

a numeric vector

LITO

a numeric vector

F1_Ag.1

a numeric vector

F1_Ag.2

a numeric vector

F2_Ag.1

a numeric vector

F1_Al2O3.1

a numeric vector

F1_Al2O3.2

a numeric vector

F2_Al2O3.1

a numeric vector

F1_Au_INAA.1

a numeric vector

F1_Au_INAA.2

a numeric vector

F2_Au_INAA.1

a numeric vector

F1_Ba_INAA.1

a numeric vector

F1_Ba_INAA.2

a numeric vector

F2_Ba_INAA.1

a numeric vector

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(CHorFieldDUP)
str(CHorFieldDUP)

C-horizon of the Kola Data

Description

The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the C-horizon.

Usage

data(chorizon)

Format

A data frame with 606 observations on the following 111 variables.

ID

a numeric vector

XCOO

a numeric vector

YCOO

a numeric vector

ELEV

a numeric vector

COUN

a factor with levels FIN NOR RUS

ASP

a factor with levels E FLAT N NE NW NW S SE SW W

TOPC

a numeric vector

LITO

a numeric vector

Ag

a numeric vector

Ag_INAA

a numeric vector

Al

a numeric vector

Al_XRF

a numeric vector

Al2O3

a numeric vector

As

a numeric vector

As_INAA

a numeric vector

Au

a numeric vector

Au_INAA

a numeric vector

B

a numeric vector

Ba

a numeric vector

Ba_INAA

a numeric vector

Be

a numeric vector

Bi

a numeric vector

Br_IC

a numeric vector

Br_INAA

a numeric vector

Ca

a numeric vector

Ca_INAA

a numeric vector

Ca_XRF

a numeric vector

CaO

a numeric vector

Cd

a numeric vector

Ce_INAA

a numeric vector

Cl_IC

a numeric vector

Co

a numeric vector

Co_INAA

a numeric vector

Cr

a numeric vector

Cr_INAA

a numeric vector

Cs_INAA

a numeric vector

Cu

a numeric vector

EC

a numeric vector

Eu_INAA

a numeric vector

F_IC

a numeric vector

Fe

a numeric vector

Fe_INAA

a numeric vector

Fe_XRF

a numeric vector

Fe2O3

a numeric vector

Hf_INAA

a numeric vector

Hg

a numeric vector

Hg_INAA

a numeric vector

Ir_INAA

a numeric vector

K

a numeric vector

K_XRF

a numeric vector

K2O

a numeric vector

La

a numeric vector

La_INAA

a numeric vector

Li

a numeric vector

LOI

a numeric vector

Lu_INAA

a numeric vector

Mg

a numeric vector

Mg_XRF

a numeric vector

MgO

a numeric vector

Mn

a numeric vector

Mn_XRF

a numeric vector

MnO

a numeric vector

Mo

a numeric vector

Mo_INAA

a numeric vector

Na

a numeric vector

Na_INAA

a numeric vector

Na_XRF

a numeric vector

Na2O

a numeric vector

Nd_INAA

a numeric vector

Ni

a numeric vector

Ni_INAA

a numeric vector

NO3_IC

a numeric vector

P

a numeric vector

P_XRF

a numeric vector

P2O5

a numeric vector

Pb

a numeric vector

Pd

a numeric vector

pH

a numeric vector

PO4_IC

a numeric vector

Pt

a numeric vector

Rb

a numeric vector

S

a numeric vector

Sb

a numeric vector

Sb_INAA

a numeric vector

Sc

a numeric vector

Sc_INAA

a numeric vector

Se

a numeric vector

Se_INAA

a numeric vector

Si

a numeric vector

Si_XRF

a numeric vector

SiO2

a numeric vector

Sm_INAA

a numeric vector

Sn_INAA

a numeric vector

SO4_IC

a numeric vector

Sr

a numeric vector

Sr_INAA

a numeric vector

Ta_INAA

a numeric vector

Tb_INAA

a numeric vector

Te

a numeric vector

Th

a numeric vector

Th_INAA

a numeric vector

Ti

a numeric vector

Ti_XRF

a numeric vector

TiO2

a numeric vector

U_INAA

a numeric vector

V

a numeric vector

W_INAA

a numeric vector

Y

a numeric vector

Yb_INAA

a numeric vector

Zn

a numeric vector

Zn_INAA

a numeric vector

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(chorizon)
str(chorizon)

Standard reference material for the Kola data

Description

This is needed for quality control.

Usage

data(CHorSTANDARD)

Format

A data frame with 52 observations on the following 95 variables.

X.Loc

a numeric vector

Ag

a numeric vector

Ag_INAA

a numeric vector

Al

a numeric vector

Al2O3

a numeric vector

As

a numeric vector

As_INAA

a numeric vector

Au_INAA

a numeric vector

B

a numeric vector

Ba

a numeric vector

Ba_INAA

a numeric vector

Be

a numeric vector

Bi

a numeric vector

Br

a numeric vector

Br_INAA

a numeric vector

Ca

a numeric vector

Ca_INAA

a numeric vector

CaO

a numeric vector

Cd

a numeric vector

Ce_INAA

a numeric vector

Cl.

a numeric vector

Co

a numeric vector

Co_INAA

a numeric vector

Cond

a numeric vector

Cr

a numeric vector

Cr_INAA

a numeric vector

Cs_INAA

a numeric vector

Cu

a numeric vector

Eu_INAA

a numeric vector

F.

a numeric vector

F_ionselect

a numeric vector

Fe

a numeric vector

Fe_INAA

a numeric vector

Fe2O3

a numeric vector

Hf_INAA

a numeric vector

Hg

a numeric vector

Hg_INAA

a numeric vector

Ir_INAA

a numeric vector

K

a numeric vector

K2O

a numeric vector

La

a numeric vector

La_INAA

a numeric vector

Li

a numeric vector

LOI

a numeric vector

Lu_INAA

a numeric vector

Mass_INAA

a numeric vector

Mg

a numeric vector

MgO

a numeric vector

Mn

a numeric vector

MnO

a numeric vector

Mo

a numeric vector

Mo_INAA

a numeric vector

Na

a numeric vector

Na_INAA

a numeric vector

Na2O

a numeric vector

Nd_INAA

a numeric vector

Ni

a numeric vector

Ni_INAA

a numeric vector

NO2.

a numeric vector

NO3.

a numeric vector

P

a numeric vector

P2O5

a numeric vector

Pb

a numeric vector

pH

a numeric vector

PO4...

a numeric vector

Rb

a numeric vector

S

a numeric vector

Sb

a numeric vector

Sb_INAA

a numeric vector

Sc

a numeric vector

Sc_INAA

a numeric vector

Se

a numeric vector

Se_INAA

a numeric vector

Si

a numeric vector

SiO2

a numeric vector

Sm_INAA

a numeric vector

Sn_INAA

a numeric vector

SO4..

a numeric vector

Sr

a numeric vector

Sr_INAA

a numeric vector

Sum

a numeric vector

Ta_INAA

a numeric vector

Tb_INAA

a numeric vector

Te

a numeric vector

Th

a numeric vector

Th_INAA

a numeric vector

Ti

a numeric vector

TiO2

a numeric vector

U_INAA

a numeric vector

V

a numeric vector

W_INAA

a numeric vector

Y

a numeric vector

Yb_INAA

a numeric vector

Zn

a numeric vector

Zn_INAA

a numeric vector

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(CHorSTANDARD)
str(CHorSTANDARD)

Plot Concentration Area

Description

Displays a concentration-area plot (see also concareaExampleKola). This function is preferable since it can be applied to non-Kola data!

Usage

concarea(x, y, z, zname = deparse(substitute(z)),
caname = deparse(substitute(z)), borders=NULL, logx = FALSE, ifjit = FALSE,
ifrev = FALSE, ngrid = 100, ncp = 0, xlim = NULL, xcoord = "Easting",
ycoord = "Northing", ifbw = FALSE, x.logfinetick = c(2, 5, 10),
y.logfinetick = c(2, 5, 10))

Arguments

x

name of the x-axis spatial coordinate, the eastings

y

name of the y-axis spatial coordinate, the northings

z

name of the variable to be processed and plotted

zname

a title for the x-axes of the qp-plot and concentration area plot.

caname

a title for the image of interpolated data.

borders

either NULL or character string with the name of the list with list elements x and y for x- and y-coordinates of map borders

logx

if it is required to make a logarithmis data transformation for the interpolation

ifrev

if FALSE the empirical function ist plotted from highest value to lowest

ngrid

default value is 100

xlim

the range for the x-axis

xcoord

a title for the x-axis, defaults to "Easting"

ycoord

a title for the y-axis, defaults to "Northing"

ifbw

if the plot is drawn in black and white

x.logfinetick

how fine are the tick marks on log-scale on x-axis

y.logfinetick

how fine are the tick marks on log-scale on y-axis

ifjit

default value is FALSE

ncp

default value is 0

Details

The function assumes that the area is proportional to the count of grid points. To be a reasonable model the data points should be 'evenly' spread over the plane. The interpolated grid size ist computed as (max(x) - min(x))/ngrid, with a default value of 100 for ngrid. Akima's interpolation function is used to obtain a linear interpolation between the spatial data values.

Value

The concentration area plot, in both directions, is created.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

concareaExampleKola

Examples

data(ohorizon)
data(kola.background)
data(bordersKola)

Cu=ohorizon[,"Cu"]
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]

op <- par(mfrow=c(1,2),mar=c(4,4,2,2))
concarea(X,Y,Cu,log=TRUE,zname="Cu in O-horizon [mg/kg]",borders="bordersKola", ifrev=FALSE,
         x.logfinetick=c(2,5,10),y.logfinetick=c(10))
par(op)

Concentration Area Plot for Kola data example

Description

Displays a concentration area plot example for the Kola data. This procedure ist useful for determining if mulitple populations that are spatially dependent are present in a data set. For a more general function see concarea.

Usage

concareaExampleKola(x, y, z, zname = deparse(substitute(z)),
caname = deparse(substitute(z)), borders="bordersKola", logx = FALSE, ifjit = FALSE,
ifrev = FALSE, ngrid = 100, ncp = 0, xlim = NULL, xcoord = "Easting",
ycoord = "Northing", ifbw = FALSE, x.logfinetick = c(2, 5, 10),
y.logfinetick = c(2, 5, 10))

Arguments

x

name of the x-axis spatial coordinate, the eastings

y

name of the y-axis spatial coordinate, the northings

z

name of the variable to be processed and plotted

zname

a title for the x-axes of the qp-plot and concentration area plot.

caname

a title for the image of interpolated data.

borders

either NULL or character string with the name of the list with list elements x and y for x- and y-coordinates of map borders

logx

if it is required to make a logarithmis data transformation for the interpolation

ifrev

if FALSE the empirical function ist plotted from highest value to lowest

ngrid

default value is 100

xlim

the range for the x-axis

xcoord

a title for the x-axis, defaults to "Easting"

ycoord

a title for the y-axis, defaults to "Northing"

ifbw

if the plot is drawn in black and white

x.logfinetick

how fine are the tick marks on log-scale on x-axis

y.logfinetick

how fine are the tick marks on log-scale on y-axis

ifjit

default value is FALSE

ncp

default value is 0

Details

The function assumes that the area is proportional to the count of grid points. To be a reasonable model the data points should be 'evenly' spread over the plane. The interpolated grid size ist computed as (max(x) - min(x))/ngrid, with a default value of 100 for ngrid. Akima's interpolation function is used to obtain a linear interpolation between the spatial data values.

Value

An example concentration area plot for Kola is created.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

qpplot.das, concarea

Examples

data(ohorizon)
data(kola.background)
data(bordersKola)

Cu=ohorizon[,"Cu"]
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]


op <- par(mfrow=c(2,2),mar=c(1.5,1.5,1.5,1.5))
concareaExampleKola(X,Y,Cu,log=TRUE,zname="Cu in O-horizon [mg/kg]",
   x.logfinetick=c(2,5,10),y.logfinetick=c(10))
par(op)

Correlation Matrix

Description

Computes correlation matrix of x with method "pearson", "kendall" or "spearman". This function also prints the matrix with the significance levels.

Usage

cor.sign(x, method = c("pearson", "kendall", "spearman"))

Arguments

x

the data

method

the method used

Details

This function estimate the association between paired samples an compute a test of the value being zero. All measures of association are in the range [-1,1] with 0 indicating no association.

Value

cor

Correlation matrix

p.value

p-value of the test statistic

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

cor.test

Examples

data(chorizon)
x=chorizon[,c("Ca","Cu","Mg","Na","P","Sr","Zn")]

cor.sign(log10(x),method="spearman")

Compares Correlation Matrices

Description

This function compares two correlation matrices numerically and graphically.

Usage

CorCompare(cor1, cor2, labels1, labels2, method1, method2, ndigits = 4,
lty1 = 1, lty2 = 2, col1 = 1, col2 = 2, lwd1 = 1.1, lwd2 = 1.1,
cex.label = 1.1, cex.legend = 1.2, lwd.legend = 1.2, cex.cor = 1, ...)

Arguments

cor1, cor2

two correlation matrices based on different estimation methods

labels1, labels2

labels for the two estimation methods

method1, method2

description of the estimation methods

ndigits

number of digits to be used for plotting the numbers

lty1, lty2, col1, col2, lwd1, lwd2, cex.label, cex.cor

other graphics parameters

cex.legend, lwd.legend

graphical parameters for the legend

...

further graphical parameters for the ellipses

Details

The ellipses are plotted with the function do.ellipses. Therefore the radius is calculated with singular value decomposition.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
x=chorizon[,c("Ca","Cu","Mg","Na","P","Sr","Zn")]
op <- par(mfrow=c(1,1),mar=c(4,4,2,0))
R=robustbase::covMcd(log10(x),cor=TRUE)$cor
P=cor(log10(x))

CorCompare(R,P,labels1=dimnames(x)[[2]],labels2=dimnames(x)[[2]],
method1="Robust",method2="Pearson",ndigits=2, cex.label=1.2)
par(op)

Correlation Matrix for Sub-groups

Description

The correlation matrix for sub-groups of data is computed and displayed in a graphic.

Usage

CorGroups(dat, grouping, labels1, labels2, legend, ndigits = 4,
method = "pearson", ...)

Arguments

dat

data values (probably log10-transformed)

grouping

factor with levels for different groups

labels1, labels2

labels for groups

legend

plotting legend

ndigits

number of digits to be used for plotting the numbers

method

correlation method: "pearson", "spearman" or "kendall"

...

will not be used in the function

Details

The corralation is estimated with a non robust method but it is possible to select between the method of Pearson, Spearman and Kendall. The groups must be provided by the user.

Value

Graphic with the different sub-groups.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
x=chorizon[,c("Ca","Cu","Mg","Na","P","Sr","Zn")]

#definition of the groups
lit=chorizon[,"LITO"]
litolog=rep(NA, length(lit))
litolog[lit==10] <- 1
litolog[lit==52] <- 2
litolog[lit==81 | lit==82 | lit==83] <- 3
litolog[lit==7] <- 4
litolog <- litolog[!is.na(litolog)]
litolog <- factor(litolog, labels=c("AB","PG","AR","LPS"))

op <- par(mfrow=c(1,1),mar=c(0.1,0.1,0.1,0.1))
CorGroups(log10(x), grouping=litolog, labels1=dimnames(x)[[2]],labels2=dimnames(x)[[2]],
legend=c("Caledonian Sediments","Basalts","Alkaline Rocks","Granites"),ndigits=2)
par(op)

Plot Ellipses

Description

This function plots ellipses according to a covariance matrix

Usage

do.ellipses(acov, pos, ...)

Arguments

acov

the given covariance matrix

pos

the location of the ellipse

...

further graphical parameter for the ellipses

Details

The correlation matrix of the given covariance is computed and the resulting ellipse is plotted. The radi is computed with the singular value decomposition and the cos/sin is calculated for 100 different degrees.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

#internal function, used in CorCompare

EDA-plot for data

Description

This function plots a histogram of the data. There is also the choice to add the density, a boxplot and a scatterplot to the histogram.

Usage

edaplot(data,scatter=TRUE,box=TRUE, P.plot=TRUE, D.plot=TRUE,
         P.main=paste("Histogram of",deparse(substitute(data))),
         P.sub=NULL, P.xlab=deparse(substitute(data)), P.ylab=default, P.ann=par("ann"),
         P.axes=TRUE, P.frame.plot=P.axes, P.log=FALSE, P.logfine=c(2,5,10), P.xlim=NULL,
         P.cex.lab=1.4,B.range=1.5, B.notch=FALSE, B.outline=TRUE,
         B.border=par("fg"), B.col=NULL, B.pch=par("pch"), B.cex=1, B.bg=NA, 
         H.breaks="Sturges", H.freq=TRUE, H.include.lowest=TRUE, H.right=TRUE, 
         H.density=NULL, H.angle=45, H.col=NULL, H.border=NULL, H.labels=FALSE, 
         S.pch=".", S.col=par("col"), S.bg=NA, S.cex=1, D.lwd=1,D.lty=1)

Arguments

data

data set

scatter

if TRUE the scatter plot is added

box

if TRUE a boxplot or boxplotlog is added

P.plot

if it is plotted or just a list is computed

D.plot

if TRUE the density is added

P.main, P.sub, P.xlab, P.ylab, P.ann

graphical parameters for the density, see plot

P.axes, P.frame.plot

plots the y-axis with the ticker

P.log

if TRUE the x-axis is in log-scale

P.logfine

how fine the tickers are

P.xlim, P.cex.lab

further graphical parameters

B.range, B.notch, B.outline, B.border, B.col, B.pch, B.cex, B.bg

parameters for boxplot and boxplotlog function, see boxplot and boxplotlog

H.breaks, H.freq, H.include.lowest, H.right, H.density, H.angle, H.col, H.border, H.labels

parameters for histogram, see hist

S.pch, S.col, S.bg, S.cex

graphical parameters for the shape of the points, see points

D.lwd, D.lty

parameters for the density

Details

First the histogram, boxplot/boxplotlog and density is calculate and then the plot is produced. The default is that histogram, boxplot, density trace and scatterplot is made.

Value

H

results of the histogram

B

results of the boxplot

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

plot,boxplot, edaplotlog, hist, points

Examples

data(chorizon)
Ba=chorizon[,"Ba"]
edaplot(Ba,H.freq=FALSE,box=TRUE,H.breaks=30,S.pch=3,S.cex=0.5,D.lwd=1.5,P.log=FALSE,
  P.main="",P.xlab="Ba [mg/kg]",P.ylab="Density",B.pch=3,B.cex=0.5)

Edaplot for logtransformed data

Description

This function plots a histogram of the data. There is also the choice to add the density, a boxplot and a scatterplot to the histogram.

Usage

edaplotlog(data, scatter = TRUE, box = TRUE, P.plot = TRUE, D.plot = TRUE,
P.main = paste("Histogram of", deparse(substitute(data))), P.sub = NULL,
P.xlab = deparse(substitute(data)), P.ylab = default, P.ann = par("ann"),
P.axes = TRUE, P.frame.plot = P.axes, P.log = FALSE,
P.logfine = c(2, 5, 10), P.xlim = NULL, P.cex.lab = 1.4, B.range = 1.5,
B.notch = FALSE, B.outline = TRUE, B.border = par("fg"), B.col = NULL,
B.pch = par("pch"), B.cex = 1, B.bg = NA, B.log = FALSE,
H.breaks = "Sturges", H.freq = TRUE, H.include.lowest = TRUE,
H.right = TRUE, H.density = NULL, H.angle = 45, H.col = NULL,
H.border = NULL, H.labels = FALSE, S.pch = ".", S.col = par("col"),
S.bg = NA, S.cex = 1, D.lwd = 1, D.lty = 1)

Arguments

data

data set

scatter

if TRUE the scatter plot is added

box

if TRUE a boxplot or boxplotlog is added

P.plot

if it is plotted or just a list is computed

D.plot

if TRUE the density is added

P.main, P.sub, P.xlab, P.ylab, P.ann

graphical parameters for the density, see plot

P.axes, P.frame.plot

plots the y-axis with the ticker

P.log

if TRUE the x-axis is in log-scale

P.logfine

how fine the tickers are

P.xlim, P.cex.lab

further graphical parameters

B.range, B.notch, B.outline, B.border, B.col, B.pch, B.cex, B.bg

parameters for boxplot and boxplotlog function, see boxplot and boxplotlog

B.log

if TRUE the function boxplotlog is used instead of boxplot

H.breaks, H.include.lowest, H.right, H.density, H.angle, H.col, H.border, H.labels

parameters for histogram, see hist

H.freq

uses the number of data points in the range

S.pch, S.col, S.bg, S.cex

graphical parameters for the shape of the points, see points

D.lwd, D.lty

parameters for the density

Details

First the histogram, boxplot/boxplotlog and density is calculate and then the plot is produced. The default is that histogram, boxplot, density trace and scatterplot is made.

Value

H

results of the histogram

B

results of boxplotlog

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

plot,boxplot, boxplotlog, hist, points

Examples

data(chorizon)
Ba=chorizon[,"Ba"]
edaplotlog(Ba,H.freq=FALSE,box=TRUE,H.breaks=30,S.pch=3,S.cex=0.5,D.lwd=1.5,P.log=FALSE,
  P.main="",P.xlab="Ba [mg/kg]",P.ylab="Density",B.pch=3,B.cex=0.5,B.log=TRUE)

Fit a Factor Analysis

Description

Internal function for pfa.

Usage

factanal.fit.principal(cmat, factors, p = ncol(cmat), start = NULL,
iter.max = 10, unique.tol = 1e-04)

Arguments

cmat

provided correlation matrix

factors

number of factors

p

number of observations

start

vector of start values

iter.max

maximum number of iteration used to calculate the common factor

unique.tol

the tolerance for a deviation of the maximum (in each row, without the diag) value of the given correlation matrix to the new calculated value

Value

loadings

A matrix of loadings, one column for each factor. The factors are ordered in decreasing order of sums of squares of loadings.

uniquness

uniquness

correlation

correlation matrix

criteria

The results of the optimization: the value of the negativ log-likelihood and information of the iterations used.

factors

the factors

dof

degrees of freedom

method

"principal"

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.


kola.background

Description

Coordinates of the Kola background. Seperate polygons for the project boundary, borders, lakes and coast are provided.

Usage

data(kola.background)

Format

The format is: List of 4 $ boundary:‘data.frame’: 50 obs. of 2 variables: ..$ V1: num [1:50] 388650 388160 386587 384035 383029 ... ..$ V2: num [1:50] 7892400 7881248 7847303 7790797 7769214 ... $ coast :‘data.frame’: 6259 obs. of 2 variables: ..$ V1: num [1:6259] 438431 439102 439102 439643 439643 ... ..$ V2: num [1:6259] 7895619 7896495 7896495 7895800 7895542 ... $ borders :‘data.frame’: 504 obs. of 2 variables: ..$ V1: num [1:504] 417575 417704 418890 420308 422731 ... ..$ V2: num [1:504] 7612984 7612984 7613293 7614530 7615972 ... $ lakes :‘data.frame’: 6003 obs. of 2 variables: ..$ V1: num [1:6003] 547972 546915 NA 547972 547172 ... ..$ V2: num [1:6003] 7815109 7815599 NA 7815109 7813873 ...

Details

Is used by plotbg()

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, Ayras M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, Jager O, Kashulina G, Lehto O, Niskavaara H, Pavlov V, Raisanen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(kola.background)
plotbg()

Krige

Description

Plots Krige maps and Legend based on continuous or percentile scale.

Usage

KrigeLegend(X, Y, z, resol = 100, vario, type = "percentile",
whichcol = "gray", qutiles = c(0, 0.05, 0.25, 0.5, 0.75, 0.9, 0.95, 1),borders=NULL,
leg.xpos.min = 780000, leg.xpos.max = 8e+05, leg.ypos.min = 7760000,
leg.ypos.max = 7870000, leg.title = "mg/kg", leg.title.cex = 0.7,
leg.numb.cex = 0.7, leg.round = 2, leg.numb.xshift = 70000, leg.perc.xshift = 40000,
leg.perc.yshift = 20000, tit.xshift = 35000)

Arguments

X

X-coordinates

Y

Y-coordinates

z

values on the coordinates

resol

resolution of blocks for Kriging

vario

variogram model

type

"percentile" for percentile legend, "contin" for continous grey-scale or colour map

whichcol

type of colour scheme to use: "gray", "rainbow", "rainbow.trunc", "rainbow.inv", "terrain", "topo"

qutiles

considered quantiles if type="percentile" is used

borders

either NULL or character string with the name of the list with list elements x and y for x- and y-coordinates of map borders

leg.xpos.min

minimum value of x-position of the legend

leg.xpos.max

maximum value of x-position of the legend

leg.ypos.min

minimum value of y-position of the legend

leg.ypos.max

maximum value of y-position of the legend

leg.title

title for legend

leg.title.cex

cex for legend title

leg.numb.cex

cex for legend number

leg.round

round legend to specified digits "pretty"

leg.numb.xshift

x-shift of numbers in legend relative to leg.xpos.max

leg.perc.xshift

x-shift of "Percentile" in legend relative to leg.xpos.min

leg.perc.yshift

y-shift of numbers in legend relative to leg.ypos.max

tit.xshift

x-shift of title in legend relative to leg.xpos.max

Details

Based on a variogram model a interpolation of the spatial data is computed. The variogram has to be provided by the user and based on this model the spatial prediction is made. To distinguish between different values every predicted value is plotted in his own scale of the choosen colour.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
data(kola.background)
X=chorizon[,"XCOO"]
Y=chorizon[,"YCOO"]
#el=chorizon[,"As"]
#vario.b <- variog(coords=cbind(X,Y), data=el, lambda=0, max.dist=300000)
#data(res.eyefit.As_C_m) #need the data 
#v5=variofit(vario.b,res.eyefit.As_C_m,cov.model="spherical",max.dist=300000)

plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n")

# to inclrease the resolution, set e.g. resol=100
#data(bordersKola) # x and y coordinates of project boundary
#KrigeLegend(X,Y,el,resol=25,vario=v5,type="percentile",whichcol="gray",
#    qutiles=c(0,0.05,0.25,0.50,0.75,0.90,0.95,1),borders="bordersKola",
#    leg.xpos.min=7.8e5,leg.xpos.max=8.0e5,leg.ypos.min=77.6e5,leg.ypos.max=78.7e5,
#    leg.title="mg/kg", leg.title.cex=0.7, leg.numb.cex=0.7, leg.round=2,
#    leg.numb.xshift=0.7e5,leg.perc.xshift=0.4e5,leg.perc.yshift=0.2e5,tit.xshift=0.35e5)
#
#plotbg(map.col=c("gray","gray","gray","gray"),map.lwd=c(1,1,1,1),add.plot=TRUE)

Plot the Loadings of a FA

Description

Makes a Reimann-plot of a loadings matrix.

Usage

loadplot(fa.object, titlepl = "Factor Analysis", crit = 0.3, length.varnames = 2)

Arguments

fa.object

the output of factor analysis class

titlepl

the title of the plot

crit

all loadings smaller than crit will be ignored in the plot

length.varnames

number of letters for abbreviating the variable names in the plot

Value

Plot of the loadings of a FA therefore a object of factor analysis class must be provided.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(moss)
var=c("Ag","Al","As","B","Ba","Bi","Ca","Cd","Co","Cr","Cu","Fe","Hg","K","Mg","Mn","Mo",
      "Na","Ni","P","Pb","Rb","S","Sb","Si","Sr","Th","Tl","U","V","Zn")
x=log10(moss[,var])

x.mcd=robustbase::covMcd(x,cor=TRUE)
x.rsc=scale(x,x.mcd$cent,sqrt(diag(x.mcd$cov)))
res5=pfa(x.rsc,factors=2,covmat=x.mcd,scores="regression",rotation="varimax",
    maxit=0,start=rep(0,ncol(x.rsc)))
loadplot(res5,titlepl="Robust FA (log-transformed)", crit=0.3)

Boundary of the Monchegorsk area

Description

This gives x- and y-coordinates with the boundary of the area around Monchegorsk.

Usage

data(monch)

Format

The format is: List of 2 $ x: num [1:32] 710957 734664 754666 770223 779113 ... $ y: num [1:32] 7473981 7473143 7474818 7483191 7488215 ...

Details

This object can be used to select samples from the Kola data from the region around Monchegorsk.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(monch)
data(kola.background)
plotbg()
lines(monch$x,monch$y,col="red")

Moss layer of the Kola Data

Description

The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the moss layer.

Usage

data(moss)

Format

A data frame with 594 observations on the following 58 variables.

ID

a numeric vector

XCOO

a numeric vector

YCOO

a numeric vector

ELEV

a numeric vector

COUN

a factor with levels FIN NOR RUS

ASP

a factor with levels E FLAT N NE NW NW S SE SW W

GENLAN

a factor with levels DEEPVAL FLA PLAIN FLAT HIMO LOWMO PLAIN PLAT RIDGE SLOPE

TOPO

a factor with levels BRUP BRUPLOW BRUPSTEE CONC CONCFLAT CONCLOW CONCMED CONCRUG CONCTERR CONV CONVLO CONVLOW CONVMED CONVTER FLAT FLATLOW FLATRUG FLATTER FLATTERR LOBRRUG LOW LOWBR LOWBRFLAT LOWBRLO LOWBRLOW LOWBRMED RUG RUGLOW TER TERLOW TERR TERRLOW TOHIFLAT TOP TOPFLAT TOPHILO TOPLOW TOPTER TOPUPBR UPBR UPBRFLAT UPBRLOW UPBRMED UPBRTER UPBRTERR UPTER

GROUNDVEG

a factor with levels BLUEBERRY CARLIN_HEATHER EMPETRUM GRASS LICHEN MOSS SHRUBS WHITE_LICHEN

TREELAY

a factor with levels BIPI BIPISPR BIRCH BIRCHdense BISPR BISPRPI MIX PIBI PIBISPR PINE PISPR PISPRBI SHRUBS SPARCEBI SPARCEPI SPRBI SPRBIPI SPRPI SPRPIBI SPRUCE WILLOW

VEG_ZONE

a factor with levels BOREAL_FOREST DWARF_SHRUB_TUNDRA FOREST_TUNDRA SHRUB_TUNDRA TUNDRA

Date

a numeric vector

SAMP

a factor with levels ALL ATMLRMA CRGKPCTF CRJHOJTV CRJHPC CRJHTF CROJTV CRPCTF CRPCTV CRTF DRMLRKK DRMRLKK GKJHOJ GKJHTV GKOJPCTV GKOJTF GKOJTV GKPCTF HARR JA JAMAMRL JAMLRMA JAMLRRR JARKP JARP JARPMA JARPMLR JARR JARRMLR JCPCTF JHGKTV JHOJGK JHOJTV JHPCTF JHRBTV Katanaev MAKKVG MARP MARPMLR MARPMRL MAVG MLR MLRJA MLRJARP MLRJARR MLRJSRR MLRMADR MLRMAJA MLRMARP MLRMAVG MLRM?VG MLRRPJA MLRRPMA MRLMAJA OJGKTV OJTF Pavlov RPAV RPEM RPMA RPMLRJA RPMLRMA RPVM Semenov Smirnov TFOJ VGHNMA VGMA VGMAHN VGMARS VGMASR VGRSMA VMRP VMRPMA

SPECIES

a factor with levels HSDC HSDR HSRC HSSC HSSR PS PSDC PSDR PSRC PSRD PSSC PSSR SFDR

LITO

a numeric vector

C_PAR

a factor with levels BEDR FLUV FLUVG MAR SAP SEA STRAT TILL TILLSA TILLSAP TILL&SAP

TOPC

a numeric vector

WEATH

a factor with levels DRY DRY MIX MIX RAIN SNOW

TEMP

a numeric vector

Ag

a numeric vector

Al

a numeric vector

As

a numeric vector

Au

a numeric vector

B

a numeric vector

Ba

a numeric vector

Be

a numeric vector

Bi

a numeric vector

Ca

a numeric vector

Cd

a numeric vector

Co

a numeric vector

Cr

a numeric vector

Cu

a numeric vector

Fe

a numeric vector

Hg

a numeric vector

K

a numeric vector

La

a numeric vector

Mg

a numeric vector

Mn

a numeric vector

Mo

a numeric vector

Na

a numeric vector

Ni

a numeric vector

P

a numeric vector

Pb

a numeric vector

Pd

a numeric vector

Pt

a numeric vector

Rb

a numeric vector

S

a numeric vector

Sb

a numeric vector

Sc

a numeric vector

Se

a numeric vector

Si

a numeric vector

Sr

a numeric vector

Th

a numeric vector

Tl

a numeric vector

U

a numeric vector

V

a numeric vector

Y

a numeric vector

Zn

a numeric vector

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(moss)
str(moss)

Boundary of the area Nikel-Zapoljarnij

Description

This gives x- and y-coordinates with the boundary of the area around Nikel-Zapoljarnij.

Usage

data(nizap)

Format

The format is: List of 2 $ x: num [1:36] 699104 693918 681324 662062 645023 ... $ y: num [1:36] 7739416 7746115 7751139 7756163 7757000 ...

Details

This object can be used to select samples from the Kola data from the region around Nikel-Zapoljarnij.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(nizap)
data(kola.background)
plotbg()
lines(nizap$x,nizap$y,col="red")

Northarrow

Description

Add a North Arrow to a map.

Usage

Northarrow(Xbottom, Ybottom, Xtop, Ytop, Xtext, Ytext, Alength, Aangle, Alwd,
Tcex)

Arguments

Xbottom

x coordinate of the first point

Ybottom

y coordinate of the first point

Xtop

x coordinate of the second point

Ytop

y coordinate of the second point

Xtext

x coordinate of the label

Ytext

y coordinate of the label

Alength

length of the edges of the arrow head (in inches)

Aangle

angle from the shaft of the arrow to the edge of the arrow head

Alwd

The line width, a positive number

Tcex

numeric character expansion factor

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

plot.new()
Northarrow(0.5,0,0.5,1,0.5,0.5,Alength=0.15,Aangle=15,Alwd=2,Tcex=2)

O-horizon of the Kola Data

Description

The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the O-horizon.

Usage

data(ohorizon)

Format

A data frame with 617 observations on the following 85 variables.

ID

a numeric vector

XCOO

a numeric vector

YCOO

a numeric vector

ELEV

a numeric vector

COUN

a factor with levels FIN NOR RUS

X.ASP

a factor with levels -9999 E FLAT N NE NW NW S SE SW W

AoMEAN

a numeric vector

HUMNO

a numeric vector

HUMTHI

a numeric vector

GROUNDVEG

a factor with levels BLUEBERRY CARLIN_HEATHER EMPETRUM GRASS LICHEN MOSS SHRUBS WHITE_LICHEN

TREELAY

a factor with levels BIPI BIPISPR BIRCH BIRCHdense BISPR BISPRPI MIX PIBI PIBISPR PINE PISPR PISPRBI SHRUBS SPARCEBI SPARCEPI SPRBI SPRBIPI SPRPI SPRPIBI SPRUCE WILLOW

VEG_ZONE

a factor with levels BOREAL_FOREST DWARF_SHRUB_TUNDRA FOREST_TUNDRA SHRUB_TUNDRA TUNDRA

LITO

a numeric vector

Ag

a numeric vector

Al

a numeric vector

Al_AA

a numeric vector

As

a numeric vector

Au

a numeric vector

B

a numeric vector

Ba

a numeric vector

Ba_AA

a numeric vector

Be

a numeric vector

Bi

a numeric vector

Br

a numeric vector

C

a numeric vector

Ca

a numeric vector

Ca_AA

a numeric vector

Cd

a numeric vector

Cd_AA

a numeric vector

Cl

a numeric vector

Co

a numeric vector

Co_AA

a numeric vector

Cond

a numeric vector

Cr

a numeric vector

Cr_AA

a numeric vector

Cu

a numeric vector

Cu_AA

a numeric vector

F

a numeric vector

Fe

a numeric vector

Fe_AA

a numeric vector

H

a numeric vector

Hg

a numeric vector

K

a numeric vector

K_AA

a numeric vector

La

a numeric vector

LOI

a numeric vector

Mg

a numeric vector

Mg_AA

a numeric vector

Mn

a numeric vector

Mn_AA

a numeric vector

Mo

a numeric vector

N

a numeric vector

Na

a numeric vector

Na_AA

a numeric vector

Ni

a numeric vector

Ni_AA

a numeric vector

NO3

a numeric vector

P

a numeric vector

P_AA

a numeric vector

Pb

a numeric vector

Pb_AA

a numeric vector

Pd

a numeric vector

pH

a numeric vector

PO4

a numeric vector

Pt

a numeric vector

Rb

a numeric vector

S

a numeric vector

S_AA

a numeric vector

Sb

a numeric vector

Sc

a numeric vector

Se

a numeric vector

Si

a numeric vector

Si_AA

a numeric vector

SO4

a numeric vector

Sr

a numeric vector

Sr_AA

a numeric vector

Th

a numeric vector

Ti_AA

a numeric vector

Tl

a numeric vector

U

a numeric vector

V

a numeric vector

V_AA

a numeric vector

Y

a numeric vector

Zn

a numeric vector

Zn_AA

a numeric vector

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(ohorizon)
str(ohorizon)

Principal Factor Analysis

Description

Computes the principal factor analysis of the input data.

Usage

pfa(x, factors, data = NULL, covmat = NULL, n.obs = NA, subset, na.action,
start = NULL, scores = c("none", "regression", "Bartlett"),
rotation = "varimax", maxiter = 5, control = NULL, ...)

Arguments

x

(robustly) scaled input data

factors

number of factors

data

default value is NULL

covmat

(robustly) computed covariance or correlation matrix

n.obs

number of observations

subset

if a subset is used

start

starting values

scores

which method should be used to calculate the scores

rotation

if a rotation should be made

maxiter

maximum number of iterations

control

default value is NULL

na.action

what to do with NA values

...

arguments for creating a list

Value

loadings

A matrix of loadings, one column for each factor. The factors are ordered in decreasing order of sums of squares of loadings.

uniquness

uniquness

correlation

correlation matrix

criteria

The results of the optimization: the value of the negativ log-likelihood and information of the iterations used.

factors

the factors

dof

degrees of freedom

method

"principal"

n.obs

number of observations if available, or NA

call

The matched call.

STATISTIC, PVAL

The significance-test statistic and p-value, if can be computed

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(moss)
var=c("Ni","Cu","Mg","Rb","Mn")
x=log10(moss[,var])

x.mcd=robustbase::covMcd(x,cor=TRUE)
x.rsc=scale(x,x.mcd$cent,sqrt(diag(x.mcd$cov)))
pfa(x.rsc,factors=2,covmat=x.mcd,scores="regression",rotation="varimax",
    maxit=0,start=rep(0,ncol(x.rsc)))

Kola background Plot

Description

Plots the Kola background

Usage

plotbg(map = "kola.background", which.map = c(1, 2, 3, 4),
map.col = c(5, 1, 3, 4), map.lwd = c(2, 1, 2, 1), add.plot = FALSE, ...)

Arguments

map

List of coordinates. For the correct format see also help(kola.background)

which.map

which==1 ... plot project boundary; which==2 ... plot coast line; which==3 ... plot country borders; which==4 ... plot lakes and rivers

map.col

Map colors to be used

map.lwd

Defines linestyle of the background

add.plot

logical. if true background is added to an existing plot

...

additional plot parameters, see help(par)

Details

Plots the background map of Kola

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(kola.background)
plotbg()

Plot Elements of a Discriminant Analysis

Description

Plot the elements for the discriminant analysis. The plot is ordered in the different groups.

Usage

plotelement(da.object)

Arguments

da.object

a object of the lda class

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(iris3)
Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]), Sp = rep(c("s","c","v"), rep(50,3)))
train <- sample(1:150, 75) 
z <- MASS::lda(Sp ~ ., Iris, prior = c(1,1,1)/3, subset = train) 

plotelement(z)

Plot Ellipse

Description

Plots an ellipse with percentage tolerance and a certain location and covariance.

Usage

plotellipse(x.loc, x.cov, perc = 0.98, col = NULL, lty = NULL)

Arguments

x.loc

the location vector

x.cov

the covariance

perc

defines the percentage and should be a (vector of) number(s) between 0 and 1

col, lty

graphical parameters

Details

First the radius of the covariance is calculated and then the ellipses for the provided percentages are plotted at the certain location.

Value

Plot with ellipse.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(moss)
Ba=log10(moss[,"Ba"])
Ca=log10(moss[,"Ca"])
plot.new()
plot.window(xlim=range(Ba),ylim=c(min(Ca)-1,max(Ca)))

x=cbind(Ba,Ca)
plotellipse(apply(x,2,mean),cov(x),perc=c(0.5,0.75,0.9,0.98))

Multivariate outlier plot

Description

This function plots multivariate outliers. One possibility is to distinguish between outlier and no outlier. The alternative is to distinguish between the different percentils (e.g. <25%, 25%<x<50%,...).

Usage

plotmvoutlier(coord, data, quan = 1/2, alpha = 0.025, symb = FALSE, bw = FALSE,
plotmap = TRUE, map = "kola.background", which.map = c(1, 2, 3, 4),
map.col = c(5, 1, 3, 4), map.lwd = c(2, 1, 2, 1), pch2 = c(3, 21),
cex2 = c(0.7, 0.2), col2 = c(1, 1), lcex.fac = 1, ...)

Arguments

coord

the coordinates for the points

data

the value for the different coordinates

quan

Number of subsets used for the robust estimation of the covariance matrix. Allowed are values between 0.5 and 1., see covMcd

alpha

Maximum thresholding proportion

symb

if FALSE, only two different symbols (outlier and no outlier) will be used

bw

if TRUE, symbols are in gray-scale (only if symb=TRUE)

plotmap

if TRUE, the map is plotted

map

the name of the background map

which.map, map.col, map.lwd

parameters for the background plot, see plotbg

pch2, cex2, col2

graphical parameters for the points

lcex.fac

factor for multiplication of symbol size (only if symb=TRUE)

...

further parameters for the plot

Details

The function computes a robust estimation of the covariance and then the Mahalanobis distances are calculated. With this distances the data set is divided into outliers and non outliers. If symb=FALSE only two different symbols are used otherwise different grey scales are used to distinguish the different types of outliers.

Value

o

returns the outliers

md

the square root of the Mahalanobis distance

euclidean

the Euclidean distance of the scaled data

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

plotbg, covMcd, arw

Examples

data(moss)
X=moss[,"XCOO"]
Y=moss[,"YCOO"]
el=c("Ag","As","Bi","Cd","Co","Cu","Ni")
x=log10(moss[,el])

data(kola.background)
plotmvoutlier(cbind(X,Y),x,symb=FALSE,map.col=c("grey","grey","grey","grey"),
       map.lwd=c(1,1,1,1),
       xlab="",ylab="",frame.plot=FALSE,xaxt="n",yaxt="n")

Multivariate outlier plot for each dimension

Description

A multivariate outlier plot for each dimension is produced.

Usage

plotuniout(x, symb = FALSE, quan = 1/2, alpha = 0.025, bw = FALSE,
pch2 = c(3, 1), cex2 = c(0.7, 0.4), col2 = c(1, 1), lcex.fac = 1, ...)

Arguments

x

dataset

symb

if FALSE, only two different symbols (outlier and no outlier) will be used

quan

Number of subsets used for the robust estimation of the covariance matrix. Allowed are values between 0.5 and 1., see covMcd

alpha

Maximum thresholding proportion, see arw

bw

if TRUE, symbols are in gray-scale (only if symb=TRUE)

pch2, cex2, col2

graphical parameters for the points

lcex.fac

factor for multiplication of symbol size (only if symb=TRUE)

...

further graphical parameters for the plot

Value

o

returns the outliers

md

the square root of the Mahalanobis distance

euclidean

the Euclidean distance of the scaled data

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

arw, covMcd

Examples

data(moss)
el=c("Ag","As","Bi","Cd","Co","Cu","Ni")
dat=log10(moss[,el])

ans<-plotuniout(dat,symb=FALSE,cex2=c(0.9,0.1),pch2=c(3,21))

Coordinates of Points Inside a Polygon

Description

This function builds a rectangular grid and extracts points which are inside of an internal polygonal region.

Usage

polygrid(xgrid, ygrid, borders, vec.inout = FALSE, ...)

Arguments

xgrid

grid values in the x-direction.

ygrid

grid values in the y-direction.

borders

a matrix with polygon coordinates defining the borders of the region.

vec.inout

logical. If TRUE a logical vector is included in the output indicating whether each point of the grid is inside the polygon. Defaults to FALSE.

...

currently not used (kept for back compatibility).

Details

The function works as follows: First it creates a grid using the R function expand.grid and then it uses the geoR' internal function .geoR_inout() which wraps usage of SpatialPoints and over from the package sp to extract the points of the grid which are inside the polygon.

Value

A list with components:

xypoly

an n×2n \times 2 matrix with the coordinates of the points inside the polygon.

vec.inout

logical, a vector indicating whether each point of the rectangular grid is inside the polygon. Only returned if vec.inout = TRUE.

Author(s)

Paulo Justiniano Ribeiro Jr. [email protected],
Peter J. Diggle [email protected].

References

See the package geoR.

See Also

expand.grid, over, SpatialPoints.

Examples

poly <- matrix(c(.2, .8, .7, .1, .2, .1, .2, .7, .7, .1), ncol=2)
 plot(0:1, 0:1, type="n")
 lines(poly)
 poly.in <- polygrid(seq(0,1,l=11), seq(0,1,l=11), poly, vec=TRUE)
 points(poly.in$xy)

Connect the Values with a Polygon

Description

Connect the values for the elements with a polygon. Every "point" has his own shape and this demonstrates the characteristic of the point.

Usage

polys(x, scale = TRUE, labels = dimnames(x)[[1]], locations = NULL, 
nrow = NULL, ncol = NULL, key.loc = NULL, key.labels = dimnames(x)[[2]], 
key.xpd = TRUE, xlim = NULL, ylim = NULL, flip.labels = NULL, factx = 1, 
facty = 1, col.stars = NA, axes = FALSE, frame.plot = axes, main = NULL, 
sub = NULL, xlab = "", ylab = "", cex = 0.8, lwd = 1.1, lty = par("lty"), 
xpd = FALSE, 
mar = pmin(par("mar"), 1.1 + c(2 * axes + (xlab != ""), 2 * axes + 
      (ylab != ""), 1, 0)), 
add = FALSE, plot = TRUE, ...)

Arguments

x

a matrix or a data frame

scale

if TRUE, the data will be scaled

labels

the labels for the polygons inside the map

locations

the locations for the polygons inside the map

nrow, ncol

integers giving the number of rows and columns to use when locations=NULL. By default, 'nrow==ncol', a square layout will be used.

key.loc

the location for the legend

key.labels

the labels in the legend

key.xpd

A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all plotting is clipped to the figure region, and if NA, all plotting is clipped to the device region.

flip.labels

logical indicating if the label locations should flip up and down from diagram to diagram.

factx

additive factor for the x-coordinate

facty

magnification for the influence of the x-coordinate on the y-coordinate

main, sub, xlab, ylab, xlim, ylim, col.stars, cex, lwd, lty, xpd, mar

graphical parameters and labels for the plot

axes

if FALSE, no axes will be drawn

frame.plot

if TRUE, a box will be made around the plot

add

if TRUE, it will be added to the plot

plot

nothing is plotted

...

further graphical parameters

Details

Each polygon represents one row of the input x. For the variables the values are computed and then those values are connected with a polygon. The location of the polygons can be defined by the user.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(ohorizon)
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
el=log10(ohorizon[,c("Cu","Ni","Na","Sr")])
sel <- c(3,8,22, 29, 32, 35, 43, 69, 73 ,93,109,129,130,134,168,181,183,205,211,
      218,237,242,276,292,297,298,345,346,352,372,373,386,408,419,427,441,446,490,
      516,535,551,556,558,564,577,584,601,612,617)
x=el[sel,]
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n",
   xlim=c(360000,max(X)))
polys(x,ncol=8,key.loc=c(15,1),factx=0.30,facty=2.0,cex=0.75,lwd=1.1)

PP plot

Description

This function computes a PP (Probability-Probability) plot for the given dataset.

Usage

ppplot.das(x, pdist = pnorm, xlab = NULL, ylab = "Probability", line = TRUE, 
        lwd = 2, pch = 3, cex = 0.7, cex.lab = 1, ...)

Arguments

x

dataset

pdist

the distribution function

xlab, ylab, lwd, pch, cex, cex.lab

graphical parameters

line

if a regression line should be added

...

further parameters for the probability function

Details

The empirical probability is calculated and compared with the comparison distribution.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(AuNEW)
ppplot.das(AuNEW,pdist=plnorm,xlab="Probability of Au",
     ylab="Probabilities of lognormal distribution", pch=3,cex=0.7)

QP plot

Description

This function produces a QP (Quantile-Probability) plot of the data.

Usage

qpplot.das(x, qdist = qnorm, probs = NULL, logx = FALSE, cex.lab = 1,
xlab = NULL, ylab = "Probability [%]", line = TRUE, lwd = 2, pch = 3,
logfinetick = c(10), logfinelab = c(10), cex = 0.7, xlim = NULL,
ylim = NULL, gridy = TRUE, add.plot = FALSE, col = 1, ...)

Arguments

x

data

qdist

The probability function with which the data should be compared.

probs

The selected probabilities, see details

logx

if TRUE, then log scale on x-axis is used

cex.lab

The size of the label

xlab

title for x-axis

ylab

title for y-axis

line

if TRUE the line will be drawn

lwd

the width of the line

pch, cex, col

graphical parameter

logfinetick

how fine are the tick marks on log-scale on x-axis

logfinelab

how fine are the labels on log-scale on x-axis

xlim

the range for the x-axis

ylim

the range for the y-axis

gridy

if grid along y-axis should be drawn

add.plot

if TRUE the new plot is added to an old one

...

futher arguments for the probability function

Details

First the probability of the sorted input x is computed and than the selected quantiles are calculated and after that plot is produced. If probs=NULL then the 1%, 5%, 10%, 20%,...., 90%, 95% and 99% quantile is taken.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

plot, par, plot.default

Examples

data(AuNEW)
qpplot.das(AuNEW,qdist=qlnorm,xlab="Au",
ylab="Probabilities of lognormal distribution", pch=3,cex=0.7)

QQ plot

Description

A QQ (Quantile-Quantile) plot is produced.

Usage

qqplot.das(x, distribution = "norm", ylab = deparse(substitute(x)), 
     xlab = paste(distribution, "quantiles"), main = "", las = par("las"), 
     datax = FALSE, envelope = 0.95, labels = FALSE, col = palette()[2], 
     lwd = 2, pch = 1, line = c("quartiles", "robust", "none"), cex = 1, 
     xaxt = "s", add.plot=FALSE,xlim=NULL,ylim=NULL,...)

Arguments

x

numeric vector

distribution

name of the comparison distribution

ylab

label for the y axis (empirical quantiles)

xlab

label for the x axis (comparison quantiles)

main

title for the plot

las

if 0, ticks labels are drawn parallel to the axis

datax

if TRUE, x and y axis are exchanged

envelope

confidence level for point-wise confidence envelope, or FALSE for no envelope

labels

vector of point labels for interactive point identification, or FALSE for no labels

col, lwd, pch, cex, xaxt

graphical parameter, see par

line

"quartiles" to pass a line through the quartile-pairs, or "robust" for a robust-regression line. "none" suppresses the line

add.plot

if TRUE the new plot is added to an old one

xlim

the range for the x-axis

ylim

the range for the y-axis

...

further arguments for the probability function

Details

The probability of the input data is computed and with this result the quantiles of the comparison distribution are calculated. If line="quartiles" a line based on quartiles is plotted and if line="robust" a robust LM model is calculated.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

par

Examples

data(AuNEW)
qqplot.das(AuNEW,distribution="lnorm",col=1,envelope=FALSE,datax=TRUE,ylab="Au",
xlab="Quantiles of lognormal distribution", main="",line="none",pch=3,cex=0.7)

Result of the function eyefit for variogram estimation.

Description

This result could also be directly computed using the function eyefit.

Usage

data(res.eyefit.As_C)

Format

The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 0.8 160.3 ..$ nugget : num 0.49 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(res.eyefit.As_C)
str(res.eyefit.As_C)

Result of the function eyefit for variogram estimation.

Description

This result could also be directly computed using the function eyefit.

Usage

data(res.eyefit.As_C_m)

Format

The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 0.8 160255.8 ..$ nugget : num 0.49 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288460 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(res.eyefit.As_C_m)
str(res.eyefit.As_C_m)

Result of the function eyefit for variogram estimation.

Description

This result could also be directly computed using the function eyefit.

Usage

data(res.eyefit.AuNEW)

Format

The format is: List of 1 $ :List of 7 ..$ cov.model: chr "exponential" ..$ cov.pars : num [1:2] 0.31 53418.46 ..$ nugget : num 0.44 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 192306 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(res.eyefit.AuNEW)
str(res.eyefit.AuNEW)

Result of the function eyefit for variogram estimation.

Description

This result could also be directly computed using the function eyefit.

Usage

data(res.eyefit.Ca_C)

Format

The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 3.80e-01 1.92e+05 ..$ nugget : num 0.21 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 192306 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(res.eyefit.Ca_C)
str(res.eyefit.Ca_C)

Result of the function eyefit for variogram estimation.

Description

This result could also be directly computed using the function eyefit.

Usage

data(res.eyefit.Ca_O)

Format

The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 0.01 5341.85 ..$ nugget : num 0.12 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 192306 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(res.eyefit.Ca_O)
str(res.eyefit.Ca_O)

Result of the function eyefit for variogram estimation.

Description

This result could also be directly computed using the function eyefit.

Usage

data(res.eyefit.Hg_O)

Format

The format is: List of 1 $ :List of 7 ..$ cov.model: chr "exponential" ..$ cov.pars : num [1:2] 1.50e-02 3.21e+04 ..$ nugget : num 0.04 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288460 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(res.eyefit.Hg_O)
str(res.eyefit.Hg_O)

Result of the function eyefit for variogram estimation.

Description

This result could also be directly computed using the function eyefit.

Usage

data(res.eyefit.Pb_O1)

Format

The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 1.90e-01 5.13e+05 ..$ nugget : num 0.11 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288460 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(res.eyefit.Pb_O1)
str(res.eyefit.Pb_O1)

Result of the function eyefit for variogram estimation.

Description

This result could also be directly computed using the function eyefit.

Usage

data(res.eyefit.Pb_O2)

Format

The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 0.03 48076.64 ..$ nugget : num 0.11 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288460 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(res.eyefit.Pb_O2)
str(res.eyefit.Pb_O2)

Plot a Boxplot

Description

Plot a single horizontal boxplot, the default is a Tukey boxplot.

Usage

rg.boxplot(xx, xlab = deparse(substitute(xx)), log = FALSE, ifbw = FALSE,
wend = 0.05, xlim = NULL, main = " ", colr = 5, ...)

Arguments

xx

data

xlab

label for the x-axis

log

if TRUE, a log-scaled plot and a logtransformation of the data

ifbw

if TRUE, a IDEAS style box-and-whisker plot is produced

wend

defines the end of the whisker, default is 5% and 95% quantile

xlim

setting xlim results in outliers not being plotted as the x-axis is shortened.

main

main title of the plot

colr

the box is infilled with a yellow ochre; if no colour is required set colr=0

...

further graphical parameters for the plot

Details

As the x-axis is shortend by setting xlim, however, the statistics used to define the boxplot, or box-and-whisker plot, are still based on the total data set. To plot a truncated data set create a subset first, or use the x[x<some.value] construct in the call.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
Ba=chorizon[,"Ba"]
rg.boxplot(Ba,ifbw=TRUE,colr=0,xlab="Ba [mg/kg]",cex.lab=1.2)

Non-robust Multivariate Data Analysis

Description

Procedure to undertake non-robust multivariate data analysis. The saved list may be passed to other rotation and display functions

Usage

rg.mva(x, main = deparse(substitute(x)))

Arguments

x

data

main

used for the list

Details

Procesure to undertake non-robust multivariate data analyses; the object generated is identical to that of rg.robmva so that the savedlist may be passed to other rotation and display functions. Thus weights are set to 1, and other variables are set to appropriate defaults. The estimation of Mahalanobis distances is only undertaken if x is nonsingular, i.e. the lowest eigenvalue is > 10e-4.

Value

n

number of rows

p

number of columns

wts

the weights for the covariance matrix

mean

the mean of the data

cov

the covariance

sd

the standard deviation

r

correlation matrix

eigenvalues

eigenvalues of the SVD

econtrib

proportion of eigenvalues in %

eigenvectors

eigenvectors of the SVD

rload

loadings matrix

rcr

standardised loadings matrix

vcontrib

scores variance

pvcontrib

proportion of scores variance in %

cpvcontrib

cummulative proportion of scores variance

md

Mahalanbois distance

ppm

probability for outliegness using F-distribution

epm

probability for outliegness using Chisquared-distribution

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

#input data
data(ohorizon)
vegzn=ohorizon[,"VEG_ZONE"]
veg=rep(NA,nrow(ohorizon))
veg[vegzn=="BOREAL_FOREST"] <- 1
veg[vegzn=="FOREST_TUNDRA"] <- 2
veg[vegzn=="SHRUB_TUNDRA"] <- 3
veg[vegzn=="DWARF_SHRUB_TUNDRA"] <- 3
veg[vegzn=="TUNDRA"] <- 3
el=c("Ag","Al","As","B","Ba","Bi","Ca","Cd","Co","Cu","Fe","K","Mg","Mn",
  "Na","Ni","P","Pb","Rb","S","Sb","Sr","Th","Tl","V","Y","Zn")
x <- log10(ohorizon[!is.na(veg),el])
v <- veg[!is.na(veg)]

rg.mva(as.matrix(x[v==1,]))

Robust Multivariate Allocation Procedure

Description

Function to allocate an individual to one of several populations.

Usage

rg.mvalloc(pcrit = 0.05, x, ...)

Arguments

pcrit

When the probability of group membership is less than pcrit it is allocated to group 0.

x

contains the individuals to be allocated

...

arguments for creating a list of groups

Details

m objects are the reference populations generated by md.gait, rg.robmva or rg.mva to estimate Mahalanobis distancesand predicted probabilities of group membership for individuals in matrix x. Note that the log |determinant| of the appropriate covariance matrix is added to the Mahalanobis distance on the assumption that the covariance matrices are inhomogeneous. If the data require transformation this must be undertaken before calling this function. This implies that a similar transformation must have been used for all the reference data subsets.

Value

groups

the groups

m

number of groups

n

number of individuals to be allocated

p

number of columns

pgm

number of individuals to be allocated multiplied with the groups

pcrit

critical probability

xalloc

number of individuals as integer

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

#input data
data(ohorizon)
vegzn=ohorizon[,"VEG_ZONE"]
veg=rep(NA,nrow(ohorizon))
veg[vegzn=="BOREAL_FOREST"] <- 1
veg[vegzn=="FOREST_TUNDRA"] <- 2
veg[vegzn=="SHRUB_TUNDRA"] <- 3
veg[vegzn=="DWARF_SHRUB_TUNDRA"] <- 3
veg[vegzn=="TUNDRA"] <- 3
el=c("Ag","Al","As","B","Ba","Bi","Ca","Cd","Co","Cu","Fe","K","Mg","Mn",
  "Na","Ni","P","Pb","Rb","S","Sb","Sr","Th","Tl","V","Y","Zn")
x <- log10(ohorizon[!is.na(veg),el])
v <- veg[!is.na(veg)]

res.zone1=rg.mva(as.matrix(x[v==1,]))
res.zone2=rg.mva(as.matrix(x[v==2,]))
res.zone3=rg.mva(as.matrix(x[v==3,]))
res=rg.mvalloc(pcrit=0.01,x,res.zone1,res.zone2,res.zone3)

Remove NA

Description

Function to remove NAs from a vector and inform the user of how many.

Usage

rg.remove.na(xx)

Arguments

xx

vector

Details

The function counts the NAs in a vector and returns the number of NAs and the "new" vector.

Value

x

vector without the NAs

nna

number of NAs removed

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

x<-rep(NA,10)
x[c(1,3,5,7,9)]<-10
rg.remove.na(x)

Robust Multivariate Analysis

Description

Procedure for multivariate analysis using the minimum volume ellipsoid (MVE), minimum covariance determinant (MCD) or a supplied set of 0-1 weights.

Usage

rg.robmva(x, proc = "mcd", wts = NULL, main = deparse(substitute(x)))

Arguments

x

data

proc

procedure for the estimation (MVE or MCD)

wts

if proc=NULL, the supplied weights for the calculation

main

input for the list

Details

cov.mcd is limited to a maximum of 50 variables. Both of these procedures lead to a vector of 0-1 weights and mcd is the default. A set of weights can be generated by using Graphical Adaptive Interactive Trimming (GAIT) procedure available though rg.md.gait(). Using 0-1 weights the parameters of the background distribution are estimated by cov.wt(). A robust estimation of the Mahalanobis distances is made for the total data set but is only undertaken if x is non-singular (lowest eigenvalue is >10e-4).

Value

n

number of rows

p

number of columns

wts

the weights for the covariance matrix

mean

the mean of the data

cov

the covariance

sd

the standard deviation

r

correlation matrix

eigenvalues

eigenvalues of the SVD

econtrib

proportion of eigenvalues in %

eigenvectors

eigenvectors of the SVD

rload

loadings matrix

rcr

standardised loadings matrix

vcontrib

scores variance

pvcontrib

proportion of scores variance in %

cpvcontrib

cummulative proportion of scores variance

md

Mahalanbois distance

ppm

probability for outliegness using F-distribution

epm

probability for outliegness using Chisquared-distribution

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

#input data
data(ohorizon)
vegzn=ohorizon[,"VEG_ZONE"]
veg=rep(NA,nrow(ohorizon))
veg[vegzn=="BOREAL_FOREST"] <- 1
veg[vegzn=="FOREST_TUNDRA"] <- 2
veg[vegzn=="SHRUB_TUNDRA"] <- 3
veg[vegzn=="DWARF_SHRUB_TUNDRA"] <- 3
veg[vegzn=="TUNDRA"] <- 3
el=c("Ag","Al","As","B","Ba","Bi","Ca","Cd","Co","Cu","Fe","K","Mg","Mn",
  "Na","Ni","P","Pb","Rb","S","Sb","Sr","Th","Tl","V","Y","Zn")
x <- log10(ohorizon[!is.na(veg),el])
v <- veg[!is.na(veg)]
subvar=c("Ag","B","Bi","Mg","Mn","Na","Pb","Rb","S","Sb","Tl")
set.seed(100)

rg.robmva(as.matrix(x[v==1,subvar]))

Calculate Weighted Sums for a Matrix

Description

This function computes a weighted sum for a matrix based on computed quantiles and user defined relative importance.

Usage

rg.wtdsums(x, ri, xcentr = NULL, xdisp = NULL)

Arguments

x

matrix

ri

vector for the relative importance, length(ri)=length(x[1,])

xcentr

the provided center

xdisp

the provided variance

Details

It is not necessary to provide the center and the variance. If those values are not supplied the center is the 50% quantile and the variance is calculated from the 25% and 75% quantile.

Value

input

input parameter

centr

the center

disp

the variance

ri

relative importance

w

weights

a

normalized weights

ws

normalized weights times standardized x

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
var=c("Si_XRF","Al_XRF","K_XRF","LOI","P","Mn")
ri=c(-2.0,1.5,2.0,2.0,3.0,2.0)
x=chorizon[,var]
rg.wtdsums(x,ri)

Compares the Robust Estimation with the Classical

Description

This function compares a robust covariance (correlation) estimation (MCD is used) with the classical approach. A plot with the two ellipses will be produced and the correlation coefficients are quoted.

Usage

RobCor.plot(x, y, quan = 1/2, alpha = 0.025, colC = 1, colR = 1, ltyC = 2,
ltyR = 1, ...)

Arguments

x, y

two data vectors where the correlation should be computed

quan

fraction of tolerated outliers (at most 0.5)

alpha

quantile of chisquare distribution for outlier cutoff

colC, colR

colour for both ellipses

ltyC, ltyR

line type for both ellipses

...

other graphical parameters

Details

The covariance matrix is estimated in a robust (MCD) and non robust way and then both ellipses are plotted. The radi is calculated from the singular value decomposition and a breakpoint (specified quantile) for outlier cutoff.

Value

cor.cla

correlation of the classical estimation

cor.rob

correlation of the robust estimation

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
Be=chorizon[,"Be"]
Sr=chorizon[,"Sr"]
RobCor.plot(log10(Be),log10(Sr),xlab="Be in C-horizon [mg/kg]",
ylab="Sr in C-horizon [mg/kg]",cex.lab=1.2, pch=3, cex=0.7,
xaxt="n", yaxt="n",colC=1,colR=1,ltyC=2,ltyR=1)

Roundpretty

Description

Round a value in a pretty way.

Usage

roundpretty(kvec, maxdig)

Arguments

kvec

the variable to be rounded

maxdig

maximum number of digits after the coma

Value

result

rounded value

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

roundpretty.sub

Examples

roundpretty(0.873463029,5)
roundpretty(0.073463029,5)
roundpretty(0.003463029,5)
roundpretty(0.000463029,5)

Subfunction for Roundpretty

Description

This function rounds the number in pretty way.

Usage

roundpretty.sub(k, maxdig)

Arguments

k

number to be rounded pretty

maxdig

maximum number of digits after the coma

Details

When maxdig is larger than 8 and the number is smaller than 0.00001, the number is rounded to 8 numbers after the coma. When the number ist smaller than 0.0001 the maximum numbers after the coma is 7, and so on.

Value

kr

rounded value

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

See Also

roundpretty


Scalebar

Description

This function plots the unit at a specified location.

Usage

scalebar(Xlowerleft, Ylowerleft, Xupperright, Yupperright, shifttext, shiftkm,
sizetext)

Arguments

Xlowerleft, Ylowerleft

x and y coordinate of the lower left corner

Xupperright, Yupperright

x and y coordinate of the upper corner

shifttext

on which margin line, starting at 0 counting outwards

shiftkm

how far from the last point the label should be written

sizetext

expansion factor for the text

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

plot.new()
scalebar(0,0.25,1,0.5,shifttext=-0.05,shiftkm=4e4,sizetext=0.8)

3D plot of a Regression Model

Description

This function makes a 3D plot of the data and the regression function. The user has the choice between different methods to calculate the coefficients for the regression model.

Usage

scatter3dPETER(x, y, z, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), zlab = deparse(substitute(z)),
revolutions = 0, bg.col = c("white", "black"),
axis.col = if (bg.col == "white") "black" else "white",
surface.col = c("blue", "green", "orange", "magenta", "cyan", "red",
"yellow", "gray"), neg.res.col = "red",
pos.res.col = "green", point.col = "yellow", text.col = axis.col,
grid.col = if (bg.col == "white") "black" else "gray",
fogtype = c("exp2", "linear", "exp", "none"),
residuals = (length(fit) == 1), surface = TRUE, grid = TRUE,
grid.lines = 26, df.smooth = NULL, df.additive = NULL, sphere.size = 1,
threshold = 0.01, speed = 1, fov = 60, fit = "linear", groups = NULL,
parallel = TRUE, model.summary = FALSE)

Arguments

x, y, z

the coordinates for the points

xlab, ylab, zlab

the labels for the axis

revolutions

if the plot should be viewed from different angles

bg.col, axis.col, surface.col, point.col, text.col, grid.col

define the colour for the background, axis,...

pos.res.col, neg.res.col

colour for positive and negativ residuals

fogtype

describes the fogtype, see rgl.bg

residuals

if the residuals should be plotted

surface

if the regression function should be plotted or just the points

grid

if TRUE, the grid is plotted

grid.lines

number of lines in the grid

df.smooth

if fit=smooth, the number of degrees of freedom

df.additive

if fit=additive, the number of degrees of freedom

sphere.size

a value for calibrating the size of the sphere

threshold

the minimum size of the sphere, if the size is smaller than the threshold a point is plotted

speed

if revolutions>0, how fast you make a 360 degree turn

fov

field-of-view angle, see rgl.viewpoint

fit

which method should be used for the model; "linear", "quadratic", "smooth" or "additive"

groups

define groups for the points

parallel

if groups is not NULL, a parallel shift in the model is made

model.summary

if the summary should be returned

Details

The user can choose between a linear, quadratic, smoothed or additve model to calculate the coefficients.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

#required library
#require(IPSUR)
data(chorizon)
lit=1
# This example needs additional libraries:
#scatter3dPETER(x=log10(chorizon[chorizon$LITO==lit,"Cr"]), 
#               z=log10(chorizon[chorizon$LITO==lit,"Cr_INAA"]),
#               y=log10(chorizon[chorizon$LITO==lit,"Co"]),
#               xlab="",ylab="",zlab="",
#               neg.res.col=gray(0.6), pos.res.col=gray(0.1), point.col=1, fov=30,
#               surface.col="black",grid.col="gray",sphere.size=0.8)

Plots Smoothing Maps and a Legend

Description

Plots smoothing maps and legend based on continuous or percentile scale.

Usage

SmoothLegend(X, Y, z, resol = 200, type = "percentile", whichcol = "gray",
qutiles = c(0, 0.05, 0.25, 0.5, 0.75, 0.9, 0.95, 1), borders=NULL, leg.xpos.min = 780000,
leg.xpos.max = 8e+05, leg.ypos.min = 7760000, leg.ypos.max = 7870000,
leg.title = "mg/kg", leg.title.cex = 0.7, leg.numb.cex = 0.7, leg.round = 2,
leg.wid = 4, leg.numb.xshift = 70000, leg.perc.xshift = 40000,
leg.perc.yshift = 20000, tit.xshift = 35000)

Arguments

X

X-coordinates

Y

Y-coordinates

z

values on the coordinates

resol

resolution of smoothing

type

"percentile" for percentile legend; "contin" for continuous grey-scale or colour map

whichcol

type of color scheme to use: "grey", "rainbow", "rainbow.trunc", "rainbow.inv", "terrain" or "topo"

qutiles

considered quantiles if type="percentile" is used

borders

either NULL or character string with the name of the list with list elements x and y for x- and y-coordinates of map borders

leg.xpos.min

minimum value of x-position of the legend

leg.xpos.max

maximum value of x-position of the legend

leg.ypos.min

minimum value of y-position of the legend

leg.ypos.max

maximum value of y-position of the legend

leg.title

title for legend

leg.title.cex

cex for legend title

leg.numb.cex

cex for legend numbers

leg.round

round legend to specified digits "pretty"

leg.wid

width (space in numbers) for legend

leg.numb.xshift

x-shift of numbers in legend relative to leg.xpos.max

leg.perc.xshift

x-shift of "Percentile" in legend relative to leg.xpos.min

leg.perc.yshift

y-shift of "Percentile" in legend relative to leg.ypos.max

tit.xshift

x-shift of title in legend relative to leg.xpos.max

Details

First a interpolation is applied using different versions of algorithms from Akima and then all points a distinguished into inside an outside the polygonal region. Now the empirical quantiles for points inside the polygon are computed and then the values are plotted in different scales of the choosen colour. ATTENTION: here borders were defined for the smoothing region

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
X=chorizon[,"XCOO"]
Y=chorizon[,"YCOO"]
el=log10(chorizon[,"As"])

# generate plot 
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n")

data(bordersKola) # list with list elements x and y for x- and y-corrdinates of map borders
SmoothLegend(X,Y,el,resol=200,type="contin",whichcol="gray",
    qutiles=c(0,0.05,0.25,0.50,0.75,0.90,0.95,1), borders="bordersKola",
    leg.xpos.min=7.8e5,leg.xpos.max=8.0e5,leg.ypos.min=77.6e5,leg.ypos.max=78.7e5,
    leg.title="mg/kg", leg.title.cex=0.7, leg.numb.cex=0.7, leg.round=2,leg.wid=4,
    leg.numb.xshift=0.7e5,leg.perc.xshift=0.4e5,leg.perc.yshift=0.2e5,tit.xshift=0.35e5)

# plot background
data(kola.background)
plotbg(map.col=c("gray","gray","gray","gray"),map.lwd=c(1,1,1,1),add.plot=TRUE)

Plot Suns

Description

This function makes a graphical diagram of multivariate data. Every element represents one line in the sun and the length of the line indicates the concentration of the element.

Usage

suns(x, full = TRUE, scale = TRUE, radius = TRUE, labels = dimnames(x)[[1]],
locations = NULL, nrow = NULL, ncol = NULL, len = 1, key.loc = NULL,
key.labels = dimnames(x)[[2]], key.xpd = TRUE, xlim = NULL, ylim = NULL,
flip.labels = NULL, col.stars = NA, axes = FALSE, frame.plot = axes, main = NULL,
sub = NULL, xlab = "", ylab = "", cex = 0.8, lwd = 0.25, lty = par("lty"),
xpd = FALSE,
mar = pmin(par("mar"), 1.1 + c(2 * axes + (xlab != ""), 2 * axes + (ylab != ""), 1, 0)),
add = FALSE, plot = TRUE, ...)

Arguments

x

a matrix or a data frame

full

if TRUE, a whole circle will be made

scale

if TRUE, the data will be scaled

radius

should be TRUE, otherwise the lines in the sun will not be plotted

labels

the labels for the suns inside the map

locations

the locations for the suns inside the map

nrow, ncol

integers giving the number of rows and columns to use when locations=NULL

len

scaling factor for the length of the lines (according to the size of the map)

key.loc

the location for the legend

key.labels

the labels in the legend

key.xpd

A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all plotting is clipped to the figure region, and if NA, all plotting is clipped to the device region.

flip.labels

logical indication if the label locations should flip up and down from diagram to diagram.

axes

if FALSE, no axes will be drawn

frame.plot

if TRUE, a box will be made around the plot

main, sub, xlab, xlim, ylim, col.stars, ylab, cex, lwd, lty, xpd, mar

graphical parameters and labels for the plot

add

if TRUE, it will be added to the plot

plot

nothing is plotted

...

graphical parameters for plotting the box

Details

Each sun represents one row of the input x. Each line of the sun represents one choosen element. The distance from the center of the sun to the point shows the size of the value of the (scaled) column.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(ohorizon)
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
el=log10(ohorizon[,c("Co","Cu","Ni","Rb","Bi","Na","Sr")])

sel <- c(3,8,22, 29, 32, 35, 43, 69, 73 ,93,109,129,130,134,168,181,183,205,211,
      218,237,242,276,292,297,298,345,346,352,372,373,386,408,419,427,441,446,490,
      516,535,551,556,558,564,577,584,601,612,617)
x=el[sel,]
suns(x,ncol=8,key.loc=c(15,0.5),lwd=1.3)

Plot Legend

Description

Plots symbols and Legend on a map. There are two different methods (percentile symbols or boxplot symbols) to display the legend.

Usage

SymbLegend(X, Y, z, type = "percentile", qutiles = c(0, 0.05, 0.25, 0.75, 0.95, 1),
q = NULL, symbtype = "EDA", symbmagn = 0.8, leg.position = "topright",
leg.title = "", leg.title.cex = 0.8, leg.round = 2, leg.wid = 4, leg.just = "right",
cex.scale = 0.8, xf = 9000, logscale = TRUE, accentuate = FALSE)

Arguments

X

X-coordinates

Y

Y-coordinates

z

values on the coordinates

type

"percentile" for percentile legend, "boxplot" for boxplot legend

qutiles

considered quantiles if type="percentile" is used

q

if not NULL, provide manually data points where to break

symbtype

type of symbols to be used; "EDA", "EDAacc", "EDAacc2", "EDAext", "GSC" or "arbit"

symbmagn

magnification factor for symbols

leg.position

position of the legend, either character like "topright" or coordinates

leg.title

title for legend

leg.title.cex

cex for legend

leg.round

round legend to specified digits "pretty"

leg.wid

width (space in numbers) for legend

leg.just

how to justify the legend

cex.scale

cex for text "log-scale" and for boxplot legend - only for type="boxplot"

xf

x-distance from boxplot to number for legend

logscale

if TRUE a log scale is used (for boxplot scale) and the log-boxplot is computed

accentuate

if TRUE, accentuated symbols are used (here only EDA accentuated!)

Details

It is possible to choose between different methods for calculating the range of the values for the different symbols.

If type="percentile" the pre-determined quantiles of the data are computed and are used to plot the symbols. If type="boxplot" a boxplot is computed and the values were taken to group the values fot the plot and the legend. In the case that a log scale is used the function boxplotlog is used instead of boxplot.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(chorizon)
data(kola.background)
el=chorizon[,"As"]
X=chorizon[,"XCOO"]
Y=chorizon[,"YCOO"]

plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n")
plotbg(map.col=c("gray","gray","gray","gray"),add.plot=TRUE)

SymbLegend(X,Y,el,type="percentile",qutiles<-c(0,0.05,0.25,0.75,0.95,1),symbtype="EDA",
symbmagn=0.8,leg.position="topright",leg.title="As [mg/kg]",leg.title.cex=0.8,leg.round=2,
leg.wid=4,leg.just="right")

Ternary plot

Description

This plot shows the relative proportions of three variables in one diagramm. It is important that the proportion sum up to 100% and if the values of the variables are very different it is important to scale them to the same data range.

Usage

ternary(x, nam = NULL, grid = FALSE, ...)

Arguments

x

matrix with 3 columns

nam

names of the variables

grid

if TRUE the grid should be plotted

...

further graphical parameters, see par

Details

The relative proportion of each variable is computed and those points are plotted into the graphic.

Value

No return value, creates a plot.

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

data(moss)
x=moss[,c("Ni","Cu","Pb")]
ternary(x,grid=TRUE,pch=3,cex=0.7,col=1)

Data for computing time trends

Description

These are time trends from the Kola Project data.

Usage

data(timetrend)

Format

A data frame with 96 observations on the following 47 variables.

DD

a numeric vector

MM

a numeric vector

YY

a numeric vector

Year

a numeric vector

Catch

a numeric vector

X.ID

a numeric vector

Ag

a numeric vector

Al

a numeric vector

As

a numeric vector

B

a numeric vector

Ba

a numeric vector

Be

a numeric vector

Bi

a numeric vector

Cd

a numeric vector

Co

a numeric vector

Cr

a numeric vector

Cu

a numeric vector

Fe

a numeric vector

K

a numeric vector

Li

a numeric vector

Mn

a numeric vector

Mo

a numeric vector

Ni

a numeric vector

Pb

a numeric vector

Rb

a numeric vector

Sb

a numeric vector

Se

a numeric vector

Sr

a numeric vector

Th

a numeric vector

Tl

a numeric vector

U

a numeric vector

V

a numeric vector

Zn

a numeric vector

Ca

a numeric vector

Mg

a numeric vector

Na

a numeric vector

P

a numeric vector

S

a numeric vector

Si

a numeric vector

PO4

a numeric vector

Br

a numeric vector

Cl

a numeric vector

F

a numeric vector

NO3

a numeric vector

SO4

a numeric vector

pH

a numeric vector

EC

a numeric vector

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(timetrend)
str(timetrend)

topsoil layer of the Kola Data

Description

The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the C-horizon.

Usage

data(topsoil)

Format

A data frame with 607 observations on the following 45 variables.

ID

a numeric vector

XCOO

a numeric vector

YCOO

a numeric vector

ELEV

a numeric vector

COUN

a factor with levels FIN NOR RUS

ASP

a factor with levels E FLAT N NE NW NW S SE SW W

TOPC

a numeric vector

LITO

a numeric vector

Ac_228

a numeric vector

As

a numeric vector

Au

a numeric vector

Ba

a numeric vector

Bi_214

a numeric vector

Br

a numeric vector

Ca

a numeric vector

Ce

a numeric vector

Co

a numeric vector

Cr

a numeric vector

Cs

a numeric vector

Cs_137

a numeric vector

EC

a numeric vector

Eu

a numeric vector

Fe

a numeric vector

Hf

a numeric vector

Hg

a numeric vector

K_40

a numeric vector

La

a numeric vector

LOI

a numeric vector

Lu

a numeric vector

Mo

a numeric vector

Na

a numeric vector

Nd

a numeric vector

Ni

a numeric vector

pH

a numeric vector

Rb

a numeric vector

Sb

a numeric vector

Sc

a numeric vector

Sm

a numeric vector

Sr

a numeric vector

Tb

a numeric vector

Th

a numeric vector

U

a numeric vector

W

a numeric vector

Yb

a numeric vector

Zn

a numeric vector

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

Source

Kola Project (1993-1998)

References

Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.

Examples

data(topsoil)
str(topsoil)

Variance Components

Description

This function estimates the variance components for ANOVA.

Usage

varcomp(a1, a2, f1, f2)

Arguments

a1, a2

analytical duplicates

f1, f2

field duplicates

Value

pct.regional

percentage of regional variability

pct.site

percentage at site variability

pct.analytical

percentage of analytical variability

pval

p-value

Author(s)

Peter Filzmoser <[email protected]> http://cstat.tuwien.ac.at/filz/

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Examples

# field duplicates:
data(CHorFieldDUP)
xfield1=CHorFieldDUP[,5:98]
xfield2=CHorFieldDUP[,99:192]

# anaytical duplicates:
data(CHorANADUP)
xanal1=CHorANADUP[,3:96]
xanal2=CHorANADUP[,97:190]

varcomp(xanal1[,1],xanal2[,1],xfield1[,1],xfield2[,1])